Неравновесная термодинамика. Рождение синергетики

Концепции современного естествознания
Мир природы и мир человека: способы познания Сциентизм и антисциентизм – мировоззренческие позиции ХХ века и их влияние на развитие культуры Предмет естествознания. Эволюция понятия природы Научный метод. Классификация методов естественнонаучного познания Формы научного знания Принципы естествознания. Способы обоснования (модели) естественнонаучного знания Возникновение естествознания. Проблема начала науки Научные революции и смена картин мира Классическое, неклассическое и постнеклассическое естествознание Знание о природе в древних цивилизациях Античная наука о природе Эпоха Средневековья: религиозная картина мира и естественнонаучное познание Эпоха Возрождения: революция в мировоззрении и науке Научная революция XVI-XVII веков, ее ход, содержание и основные итоги Естествознание в XVIII-XIX вв Физика на рубеже XIX-XX веков, ее открытия и достижения Предпосылки и основное содержание новейшей революции в естествознании (XX в.) Становление современной науки Корпускулярная и континуальная концепции природы Основные принципы термодинамики. Значение законов термодинамики в описании явлений природы Основные понятия, законы и принципы классической физики Закрытые и открытые системы. Энтропия, порядок и хаос Неравновесная термодинамика. Рождение синергетики Открытие микромира. Принципы квантовой физики Фундаментальные физические взаимодействия Основные космологические модели Вселенной Антропный принцип Строение и эволюция звезд Происхождение и строение Солнечной системы Развитие представлений о пространстве и времени в истории науки Формы пространства и времени Основные этапы (концепции) развития химии Выявление механизма реакции – установление элементарных стадий процесса и последовательности их протекания (качественные изменения); Проблемы самоорганизации в современной химии История геологического развития Земли Биология как система наук о живой природе Уровни организации живой материи и ее свойства Концепции эволюционизма в биологии Эволюция как основа многообразия и единства живых организмов Принципы воспроизводства и развития живых систем Естественнонаучная концепция антропогенеза Физиология человека. Здоровье и работоспособность человека Высшие психические функции и их физиологические механизмы. Сознание и мозг Этология. Особенности поведения человека и животных Эмоции и их роль в жизни человека Воображение и творчество. Поиски алгоритма творчества Жизнь как ценность. Биоэтика Эволюция представлений о биосфере Ноосфера. Единство человека и природы. Русский космизм Космические циклы и человек
508393
знака
2
таблицы
1
изображение

3. Неравновесная термодинамика. Рождение синергетики

Классическая термодинамика рассматривала изолированные системы, которые стремятся к равновесному состоянию, или же частично открытые системы, находящиеся вблизи от точки термодинамического равновесия. Поэтому для описания процессов самоорганизации использовать понятия классической термодинамики не представлялось возможным. Необходимо было ввести новые понятия и принципы, которые бы адекватно описывали реальные процессы самоорганизации, происходящие в природе.

Наиболее фундаментальным из них является понятие открытой системы, которая способна обмениваться с окружающей средой веществом, энергией или информацией. Поскольку между веществом и энергией существует взаимосвязь, постольку можно сказать, что система в ходе своей эволюции производит энтропию, которая, однако, не накапливается в ней, а рассеивается в окружающей среде. Вместо нее из среды поступает свежая энергия и именно вследствие такого непрерывного обмена энтропия системы может не возрастать, а оставаться неизменной или даже уменьшаться. Из этого следует, что открытая система не может быть равновесной, ее функционирование требует непрерывного поступления энергии и вещества из внешней среды, вследствие чего неравновесие в системе усиливается. В результате прежняя взаимосвязь между элементами системы (прежняя структура) разрушается. Между элементами системы возникают новые когерентные (согласованные) отношения, которые приводят к кооперативным процессам и к коллективному поведению ее элементов.

Материальные структуры, способные рассеивать энергию, называются диссипативными. Примером может служить самоорганизация, которая возникает в химических реакциях. Она связана с поступлением извне новых реагентов, то есть веществ, обеспечивающих продолжение реакции и выведение в окружающую среду продуктов реакции. Внешне самоорганизация проявляется здесь в появлении в жидкой среде концентрических волн или в периодическом изменении цвета раствора, например, с синего на красный и обратно («химические часы»). Эти реакции впервые были исследованы отечественными учеными В. Белоусовым и А. Жаботинским. На их экспериментальной основе группой бельгийских ученых во главе с И. Пригожиным была построена теоретическая модель, названная брюсселятором (от названия города Брюссель). Эта модель легла в основу исследований новой термодинамики, которую назвали неравновесной, или нелинейной. Отличительная черта моделей, описывающих открытые системы и процессы самоорганизации, состоит в том, что в них используются нелинейные математические уравнения.

Изучая процессы самоорганизации, происходящие в лазере, немецкий физик Герман Хакен назвал новое направление исследований синергетикой, что в переводе с древнегреческого означает совместное, согласованное действие. Синергетика объясняет процесс самоорганизации следующим образом:

1. Открытая система должна находиться достаточно далеко от точки термодинамического равновесия. Если система находится в точке равновесия, то она обладает максимальной энтропией и поэтому неспособна к какой-либо организации. В этом состоянии она достигает максимума дезорганизации. Если же система находится вблизи от точки равновесия, то со временем она приблизится к ней и, в конце концов, придет в состояние полной дезорганизации.

2. Если упорядочивающим принципом для закрытых систем является эволюция в сторону увеличения их энтропии, т.е. беспорядка, то фундаментальным принципом самоорганизации является возникновение и усиление порядка через флуктуации. Такие флуктуации (случайные отклонения системы от некоторого среднего положения) в самом начале функционирования системы подавляются и ликвидируются ею. Однако в открытых системах благодаря усилению неравновесности эти отклонения со временем возрастают и, в конце концов, приводят к «развалу» прежнего порядка и возникновению нового порядка. Этот принцип обычно называют как принцип образования порядка через флуктуации. Поскольку флуктуации носят случайный характер, а именно с них начинается возникновение нового порядка и структуры, постольку появление нового в мире всегда связано с действием случайных факторов.

4. В отличие от принципа отрицательной обратной связи, на котором основывается управление и сохранение динамического равновесия систем, возникновение самоорганизации опирается на принцип положительной обратной связи. Согласно этому принципу изменения, появляющиеся в системе, не устраняются, а накапливаются и усиливаются, что приводит в результате к возникновению нового порядка и структуры.

5. Процессы самоорганизации сопровождаются нарушением симметрии, свойственной для закрытых равновесных систем. Для открытых систем характерна асимметрия.

6. Самоорганизация возможна лишь в системах, имеющих достаточное количество взаимодействующих между собой элементов. В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления кооперативного (коллективного, согласованного) поведения элементов системы и возникновения процесса самоорганизации.

Это – необходимые, но не достаточные условия для возникновения самоорганизации в системе. Чем выше уровень организации системы, чем выше она находится на эволюционной лестнице, тем более сложными и многочисленными оказываются факторы, которые приводят к самоорганизации.

Новое понимание хаоса нашло свое выражение в знаменитом «эффекте бабочки», сформулированном Эдвардом Лоренцем, ученым-метеорологом. «Эффект бабочки» гласит: Движение крыла бабочки в Перу через серию непредсказуемых и взаимосвязанных событий может усилить движение воздуха и, в итоге, привести к урагану в Техасе.

Об этом же говорил еще в начале XX века знаменитый математик Анри Пуанкаре. Он пришел к выводу, что совершенно ничтожная величина, в силу этого ускользающая от нашего внимания, вызывает значительное действие, которое мы не могли и предусмотреть.

Казалось бы, все говорит о торжестве случая над предопределенностью. Однако то, что мы называем «случайностью» представляет собой некий порядок, выдающий себя за случайность, порядок, законов которого наука пока не может объяснить. Появился новый термин – аттрактор, который помогает понять происходящие процессы.

И. Пригожин, лауреат Нобелевской премии, в книге «Время, хаос, квант» пишет: «При исследовании того, как простое относится к сложному, мы выбираем в качестве путеводной нити понятие «аттрактора», то есть конечного состояния или хода эволюции диссипативной системы… Понятие аттрактора связано с разнообразием диссипативных систем… Идеальный маятник (без трения) не имеет аттрактора и колеблется бесконечно. С другой стороны, движение реального маятника – диссипативной системы, движение которой включает трение, - постепенно останавливается в состоянии равновесия. Это положение является аттрактором… В отсутствии трения аттрактор не существует, но даже самое слабое трение радикально изменяет движение маятника и вводит аттрактор». Для большей наглядности Пригожин облекает идею в геометрическую форму. Тогда конечная точка движения маятника – аттрактор – представляет собой финальное состояние любой траектории в пространстве.

Однако не все диссипативные системы эволюционируют к одной- единственной конечной точке, как в случае с реальным маятником. Есть системы, которые эволюционируют не к какому-нибудь состоянию, а к устойчивому периодическому режиму. В этом случае аттрактор не точка, а линия, описывающая периодические во времени изменения системы. Были построены изображения аттракторов, которые представляют собой не точку или линию, а поверхность или объем. Полной неожиданностью стало открытие так называемых странных аттракторов. В отличие от линии или поверхности, странные аттракторы характеризуются не целыми, а дробными размерностями.

Наиболее четкую классификацию аттракторов дал американский ученый Билл М. Вильямс, который около сорока лет проводил исследования хаотических процессов рынка. В его исследовании соединились достижения физики, математики и психологии. Он утверждает, что всеми внешними явлениями управляют четыре силы, извлекающие порядок из беспорядка, получившие название аттракторов:

·  Точечный аттрактор;

·  Циклический (круговой) аттрактор;

·  аттрактор Торас;

·  Странный аттрактор.

Точечный аттрактор – аттрактор первой размерности – это простейший способ привнести порядок в хаос. Он живет в первом измерении линии, которая составлена из бесконечного числа точек. Он характеризуется как некая устремленность. Так, в человеческом поведении Точечный аттрактор создает психологическую фиксацию на одном желании (или нежелании), и все остальное откладывается до тех пор, пока не будет удовлетворено (уничтожено) это желание.

Циклический аттрактор живет во втором измерении плоскости, которая состоит из бесконечного числа линий. Им характеризуется рынок, заключенный в коридор, где цена движется вверх и вниз в определенном диапазоне в течение некоторого промежутка времени. Этот аттрактор более сложен и является структурой для более сложного поведения.

Аттрактор Торас – еще более сложный аттрактор. Он начинает сложную циркуляцию, которая повторяет себя по мере движения вперед. По сравнению с двумя предыдущими аттрактор Торас вводит большую степень беспорядочности, и его модели более сложны. Графически он выглядит как кольцо или рогалик, он образует, спиралевидные круги на ряде различных плоскостей и иногда возвращается к себе, завершая полный оборот. Его основная черта – это повторяющееся действие.

Странный аттрактор из четвертого измерения. То, что поверхностный взгляд воспринимает как абсолютный хаос, в котором не заметно никакого порядка, имеет определенный порядок, базирующийся на Странном аттракторе. Его можно увидеть, только если наблюдение ведется из четвертого измерения. Его можно представить как множество пульсирующих линий в трехмерном пространстве, подобных вибрирующим струнам. Четырехмерность Странного аттрактора получается за счет добавления пульсаций (вибраций). Важнейшей характеристикой Странного аттрактора является чувствительность к начальным условиям («Эффект бабочки»). Малейшее отклонение от начальных условий может привести к огромным различиям в результате.

Вильямс утверждает, что, когда мы находимся под действием первых трех аттракторов, нами манипулируют, и мы становимся предсказуемыми. Только в динамике Странного аттрактора мы можем быть действительно свободными. Странный аттрактор организует прекрасный мир спонтанности и свободы.

Для описания сложных систем была создана новая геометрия. В 1975 г. Бенуа Мандельброт ввел понятие фрактал (от лат. – расколотый) для обозначения нерегулярных, но самоподобных структур. Возникновение фрактальной геометрии связано с выходом в 1977 г. книги Мандельброта «Фрактальная геометрия природы». Он писал: «Фракталом называется структура, состоящая из частей, которые в чем-то подобны целому».

Фрактальная геометрия «увидела» парадоксы, поставившие в тупик многих математиков XX века. Это и парадокс «береговой линии», парадокс «снежинка» и др.

Что это за необыкновенная «снежинка»? Представим себе равносторонний треугольник. Мысленно разделим каждую его сторону на три равные части. Уберем среднюю часть на каждой стороне и вместо нее приставим равносторонний треугольник, длина стороны которого составляет одну треть от длины исходной фигуры. Получим шестиконечную звезду. Она образована уже не тремя отрезками определенной длины, а двенадцатью отрезками длиной в три раза меньше исходной. И вершин у нее уже не три, а шесть. Повторим эту операцию вновь и вновь, число деталей в образуемом контуре будет расти и расти. Изображение приобретает вид снежинки. Связная линия, составленная из прямых (или криволинейных) участков и названная кривой Коха, обладает целым рядом особенностей. Прежде всего, она представляет собой непрерывную петлю, никогда не пересекающую саму себя, так как новые треугольники на каждой стороне достаточно малы и поэтому не сталкиваются друг с другом. Каждое преобразование добавляет немного пространства внутри кривой, однако ее общая площадь остается ограниченной и фактически лишь незначительно превышает площадь первоначального треугольника. И, кроме того, кривая никогда не выйдет за пределы окружности, описанной около него. Кривая Коха бесконечной длины теснится в ограниченном пространстве! При этом она представляет собой уже нечто большее, чем просто линия, но все же это еще не плоскость.

Итак, фракталы – это геометрические фигуры с набором очень интересных особенностей: дробление на части, подобные целому, или одно и то же преобразование, повторяющееся при уменьшающемся масштабе. Им присущи изломанность и самоподобие. Фрактальность – это мера неправильности. Например, чем больше изгибов и поворотов имеет речка, тем больше ее фрактальное число. Фракталы могут быть линейными и нелинейными. Линейные фракталы определяются линейными функциями, т.е. уравнениями первого порядка. Они проявляют самоподобие в самом бесхитростном виде: любая часть есть уменьшенная копия целого. Более разнообразным является самоподобие нелинейных фракталов: в них часть есть не точная, а деформированная копия целого. Фракталы описывают весь реальный мир.

Исходя из идеи размерности, Мандельброт пришел к выводу, что ответ на вопрос: сколько измерений имеет тот или иной объект, зависит от уровня восприятия. Например, сколько измерений имеет клубок бечевки? С огромного расстояния он выглядит точкой, имеющей нулевую размерность. Приблизимся к клубку и обнаружим, что это сфера, и у нее три измерения. На еще более близком расстоянии становится различимой сама бечевка, а объект приобретает одно измерение, но скручен таким образом, что задействуется трехмерное пространство. Под микроскопом обнаружим, что бечевка состоит из скрученных протяженных трехмерных объектов, а те, в свою очередь, из одномерных волокон, вещество которых распадается на частицы с нулевой размерностью. То есть в зависимости от нашего восприятия размерность менялась так: нулевая – трехмерная – одномерная – трехмерная – одномерная – нулевая.

Физические системы с фрактальной структурой обладают уникальными свойствами. Фракталы иначе рассеивают электромагнитное излучение, по - другому колеблются и звучат, иначе проводят электричество т.д.

Как ни парадоксально, открытие фрактальных множеств не только установило существование непрогнозируемых процессов, но и научило человека ими управлять, поскольку неустойчивость хаотических систем делает их чрезвычайно чувствительными к внешнему воздействию. При этом системы с хаосом демонстрируют удивительную пластичность. Дерево растет и ветвится вверх, но как точно изогнутся его ветви, никто не скажет. Вот почему говорится, что мир создан из хаоса.

Основные понятия темы:

Самоорганизация - процесс самопроизвольного формирования структуры более сложной, чем первоначальная.

Хаос – состояние, в котором случайность и беспорядочность становятся организующим принципом.

Порядок – организованность системы.

Равновесная термодинамика изучает замкнутые системы, в которых процессы происходят в сторону возрастания энтропии, т.е. образованию беспорядка.

Неравновесная термодинамика изучает открытые сложно организованные системы, в которых происходит самоорганизация.

Аттрактор - конечное состояние или финал эволюции диссипативной системы.

Диссипативные системы – системы, полная энергия которых при движении убывает, переходя в другие виды движения, например, в теплоту.

Точка термодинамического равновесия – состояние с максимальной энтропией.

Флуктуации – случайные отклонения системы от некоторого среднего положения.

Открытая система – система, которая обменивается со своим окружением веществом, энергией или информацией.


Тема 9. Микромир. Квантовая физика

 


Информация о работе «Концепции современного естествознания»
Раздел: Биология
Количество знаков с пробелами: 508393
Количество таблиц: 2
Количество изображений: 1

Похожие работы

Скачать
29368
0
0

... сущность теории химической эволюции и биогенеза. Опишите историю открытия и изучения клетки. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ Билет № 30 Назовите и охарактеризуйте междисциплинарные естественные науки. Сформулируйте третий закон механического движения Ньютона. Каким ...

Скачать
157302
0
0

... вещей (»арден 1987: 53-68, Назаретян 1991: 60, Абдеев 1994: 150- 160). Атрибутивная концепция информации - информация как мера упорядоченности структур и их взаимодействий на всех стадиях организации материи (Абдеев 1994: 162). Одна из самых сложных проблем современного естествознания - функционирование отражения в неживом мире (существует ли в неживом мире опосредующее звено между ...

Скачать
42356
0
0

... , или концепция биогенеза). В XIX веке ее окончательно опроверг Л. Пастер, доказав, что появление жизни там, где она не существовала, связано с бактериями (пастеризация – избавление от бактерий). 3. Концепция современного состояния предполагает, что Земля и жизнь на ней существовали всегда, причем в неизменном виде. 4. Концепция панспермии связывает появление жизни на Земле с ее занесением из ...

Скачать
67452
0
0

... галактик и Вселенной. Материальные системы микро-, макро- и мегамира различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются. Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро- и мегамира. Можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях ...

0 комментариев


Наверх