2.         Какие этапы можно выделить в развитии самоорганизующейся системы

Самоорганизация — спонтанное образование высоко-упорядоченных структур из зародышей или даже из хаоса, спонтанный переход от неупорядоченного состояния к упорядоченному за счет совместного, кооперативного (синхронного) действия многих подсистем. Хаотическое состояние содержит в себе неопределенность — вероятность и случайность, которые описываются при помощи понятий «информация» и «энтропия». После изучения случайности Хакен рассмотрел необходимости и получил детерминированные уравнения движения. При этом главными оказываются выбор равновесных мод и исследование их устойчивости. Случайное событие вызывает неустойчивость,а это — толчок для возникновения новых конфигураций (мод). Зародышем самоорганизации служит «вероятность»; упорядоченность возникает через флуктуации, устойчивость через неустойчивость. В предисловии к своей книге «Синергетика» Ха-кен пишет: «Я назвал новую дисциплину «синергетикой» не только потому, что в ней исследуется совместное действие многих элементов систем, но и потому, что для нахождения общих принципов, управляющих самоорганизацией, необходимо кооперирование многих различных дисциплин».

Суммарное уменьшение энтропии в открытых системах при определенных условиях за счет обмена потоками с внешней средой может превысить ее внутреннее производство. Появляется неустойчивость предшествующего неупорядоченного однородного состояния, возникают и могут возрасти до макроскопического уровня крупномасштабные флуктуации. Из хаоса могут возникнуть структуры, которые начнут переходить во все более упорядоченные. Эти структуры образуются за счет внутренней перестройки системы, поэтому это явление получило название самоорганизации. При этом энтропия, отнесенная к тому же значению энергии, убывает. Пригожин назвал упорядоченные образования, возникающие в диссипативных системах в ходе неравновесных необратимых процессов, диссипативными структурами (от лат. dissipatio — разгонять, рассеивать). Считается, что эти структуры летучие и возникают при рассеянии свободной энергии в неустойчивых открытых системах.

Мир живого — самоорганизующийся. Подобно тому как биосфера — самоорганизующая целостность, таковы и все ее уровни. Для животного мира формой организации является стадо. Социальное поведение животных — это эволюционный механизм, определяемый преимуществами общественной жизни. Постепенно потребность в обеспечении безопасности у животных становилась высшей потребностью, сформировала соответствующие инстинкты. Сначала была анонимная стая, потом появилась безличная затем личная семья. Этология (от греч. этос — поведение, характер, нрав) — наука о поведении животных — показывает, что в животном мире есть общественная жизнь с эмоциями и чувствами. К. Фриш экспериментировал с пчелами, а К.Лоренц и Н.Тинберген изучали более сложное поведение многих видов птиц, рыб, млекопитающих и насекомых.

3.         Какие системы могут находиться в высокоупорядоченном состоянии? Каковы необходимые условия возникновения самоорганизации и существуют ли достаточные? Объясните, почему информированность, важное свойство самоорганизации

Живая клетка — это элементарная организованная часть живой материи и сложная высокоупорядоченная система. Опытным путем установлено, что в ней непрерывно совершаются синтез крупных молекул из мелких и простых — анаболические (от греч. anabole — подъем) реакции, на которые затрачивается энергия, и их распад — катаболические (от греч. katabole — сбрасывание вниз) реакции.

Установлено, что в клетке непрерывно совершается синтез крупных молекул из мелких и простых (анаболические реакции, на которые тратится энергия) и их распад (катаболичес-кие реакции). Совокупность их в клетке есть процесс метаболизма. Особи, изучаемые на этом уровне, не существуют абсолютно изолированно в природе, они объединены на более высоком уровне организации — на уровне популяции.

Эволюцию на молекулярном уровне позволяет проследить сопоставление однотипных белков разных видов организмов, можно построить и эволюционное древо на основе состава белка. Различие может быть связано с естественным отбором, но отбор определяется биологическими функциями белков, фенотипами. Однако не всегда однозначна связь «текста» первичной структуры цепи и пространственного строения белковой глобулы с биологической функцией белка. Не все мутации белков ведут к изменению их функций, часть их оказывается нейтральной. По теории нейтралистской молекулярной эволюции японского генетика М. Кимуры (1968) скорость эволюции белка не зависит от размера популяции, причем активная часть цепи эволюционировала медленнее, чем ее «каркас». Скорость эволюции белка за год он выражал отношением числа замещенных аминокислотных остатков к одному остатку. Она оказалась постоянной для разных линий эволюции при сохранении функций и пространственной структуры молекулы. Величины скоростей замещений были меньше 10-9. Значит, время существования Вселенной недостаточно для построения макромолекул, если бы положение каждого звена фиксировалось отбором.

Выводы Кимуры об эволюции белков и нуклеиновых кислот не следует распространять на естественный отбор, относящийся к организмам. Нейтральность мутаций в «каркасе» белка во многом предопределена его строением и кодированием. Эволюция макромолекул отличается от эволюционного поведения организмов. Гомеостаз ведет к тому, что многие вредные мутации ведут себя как нейтральные. Например, одна из мутаций ухудшила свойства белка-фермента, и он стал перерабатывать субстрат медленней. Тогда организм исправит ситуацию каким-то способом, может быть, увеличит количество этого ослабленного фермента.

Математические модели могут изменить представление биологов об истоках упорядоченности в эволюции. Ведь все живые организмы являются строго упорядоченными системами. Они обладают сложными структурами, которые поддерживали и воспроизводили себя благодаря слабо выраженному взаимодействию химических и поведенческих процессов.


Информация о работе «Как ведут себя макросистемы вдали от равновесия? Пояснение принципа локального равновесия»
Раздел: Биология
Количество знаков с пробелами: 49810
Количество таблиц: 0
Количество изображений: 2

0 комментариев


Наверх