1.3 Смена пользователя. Реализует смену пользователя (Рис.6.2.1).

Для АРМа секретаря доступны полное администрирование таблиц "Студенты" и "Сотрудники", а также просмотр таблицы "Плановая загрузка" (Рис.6.2.5)

Рисунок 6.2.5 - Рабочее окно для секретаря.


2.1 Администрирование таблицы “Студенты" (Рис.6.2.6) включает в себя добавление, изменение, удаление, а также просмотр записей и возможность отсортировать их по основным полям. Для удобства в это же окно выведено количество записей.

Рисунок 6.2.6 - Администрирование таблицы “Студенты".

Если вы решите добавить запись, то появится форма с полями для заполнения (Рис.6.2.7)

Рисунок 6.2.7 - рабочее окно добавления записи.


Чтобы изменить запись необходимо выбрать номер группы и фамилию конкретного студента (Рис.6.2.8 и Рис.6.2.9) и появится форма как на Рис.6.2.10

Рисунок 6.2.8 - Окно выбора группы.

Рисунок 6.2.9 - Окно выбора студента.

Рисунок 6.2.10 - Окно изменения записи.


При удалении записи появятся также окна выбора (Рис.6.2.8 и Рис.6.2.9) и окно подтверждения удаления конкретной записи (Рис.6.2.11)

Рисунок 6.2.11 - Окно подтверждения удаления записи.

Администрирование таблицы “Сотрудники" также содержит добавление, изменение, удаление, просмотр записей и возможность отсортировать их по основным полям (Рис.6.2.12). Для удобства в это же окно выведено количество записей и дней рождений в этом месяце. Администрирование этой таблицы осуществляется по аналогии с администрированием таблицы “Студенты"

Рисунок 6.2.12 - Администрирование таблицы “Сотрудники".

Добавление записей в таблицу “Сотрудники" (Рис.6.2.13).


Рисунок 6.2.13 - Добавление в таблицу “Сотрудники”.

Для изменения записи нужно выбрать фамилию сотрудника кафедры (Рис.6.2.14) и произвести необходимые изменения (Рис.6.2.15).

Рисунок 6.2.15 - Окно выбора сотрудника.


Рисунок 6.2.16 - рабочее окно изменения записи в таблице “Сотрудники".

3. Для АРМа методиста доступны просмотр таблиц "Студенты" и "Сотрудники", а также полное администрирование таблицы "Плановая загрузка" (Рис.6.2.16).

Рисунок 6.2.18 - АРМ методиста.


Администрирование таблицы “ Плановая загрузка ” включает в себя добавление, изменение, удаление, годовой и семестровый отчеты, а также просмотр записей и возможность отсортировать их по основным полям (Рис.6.2.17). Для удобства в это же окно выведено количество записей.

Рисунок 6.2.19 - Администрирование таблицы “Плановая загрузка".


Рисунок 6.2.20 - Добавление записей в таблицу “Плановая загрузка”.

Изменение происходит после выбора преподавателя, учебного года и семестра (Рис.6.2.21), дисциплины (Рис.6.2.20).

Рисунок 6.2.21 - Изменение записей в таблице “Плановая загрузка".

Рисунок 6.2.22 - Выбор дисциплины для изменения записей в таблице “Плановая загрузка".

Для просмотра годового плана надо ввести учебный год и нажать далее (Рис.6.2.22). Выведется таблица отчетности за год. Аналогично можно просмотреть отчет за семестр (нужно выбрать семестр).

Рисунок 6.2.23 - Выбор учебного года.

Для АРМа зав. лаб. доступны полное администрирование подотчета, а также просмотр таблиц "Плановая загрузка" и "Сотрудники" (Рис.6.2.23).

Рисунок 6.2.24 - Рабочее окно для зав. лаб.

Во вкладке администрирования подотчета (Рис.6.2.24) расположены: таблица материальных ценностей (общий список), форма для добавления записей (Рис.6.2.25), а также формы требований и ведомости, заполняемые автоматически.

Рисунок 6.2.25 - Окно администрирования подотчета.

Рисунок 6.2.26 - Добавление нового оборудования.

6.3 Руководство администратора

Администратор обладает единственной возможностью: регистрировать пользователей. Это сделано с целью обезопасить информацию от несанкционированного проникновения в систему и использования ее в корыстных целях.

Администратор заходит в систему под своим паролем и добавляет пользователей в скрытую таблицу, после чего пользователи могут беспрепятственно работать с программой. Последовательность действий представлена на рисунках

Рисунок 6.3.1 - Регистрация администратора

Рисунок 6.3.2 - Приветствие администратора.

Администратором в нашем случае является Анатольев Александр Геннадьевич.


7. Расчет стоимости разработки комплексной информационной автоматизированной системы "кафедра"

Целью данного раздела является расчет затрат на разработку программного продукта. Содержание технико-экономического обоснования включает в себя:

расчет трудоемкости разработки программного продукта по этапам;

определение числа и должности разработчиков;

определение по отдельным статьям затрат, необходимых для создания и эксплуатации программного продукта;

 

7.1 Описание программного продукта

Данный программный продукт является автоматизированной информационной системой документооборота на кафедре АСОиУ, предусматривающий работу с интернетом.

По степени новизны программный продукт относится к группе Б - разработка типовых проектных решений, оригинальных задач и систем, не имеющих аналогов.

По сложности алгоритм можно отнести ко III группе (алгоритмы, реализующие стандартные методы решения, а также не предусматривающие применение сложных численных и логических методов).

Сложность организации контроля входной и выходной информации относится к группе 12 (входные данные и документы однообразной формы и содержания, осуществляется формальный контроль).

 


7.2 Расчет себестоимости разработки программного продукта

Калькуляция разработки автоматизированной системы включает следующие статьи: [Методичка "Расчет затрат на разработку программного продукта", Омск 1999.]

основная заработная плата разработчиков;

дополнительная заработная плата разработчиков;

отчисления на социальные нужды;

расходы на приобретение дополнительных средств ПО и ВТ;

расходы по отладке программ;

контрагентские расходы;

накладные расходы.

 

7.2.1 Расчет основной заработной платы разработчиков

Основная заработная плата - это плата за проработанное время. Основная заработная плата разработчиков рассчитывается, исходя из трудоемкости работ, выполняемых специалистом i-квалификации при разработке программного продукта (ti) и действующей на предприятии системы должностных окладов (Зi):

Сосн = åЗi ti.

Для расчета основной заработной платы разработчиков необходимо рассчитать трудоемкость разработки программного продукта и определить состав исполнителей.

 

7.2.2 Расчет трудоемкости методом уточненной модели

Трудоемкость создания имитационной модели будет рассчитана методом уточненной модели. В данном методе составляющие затраты труда определяются с учетом особенностей организации, ведущей разработку, и основных параметров программного продукта:

степени новизны задачи;

сложности алгоритма;

количества разновидностей входной и выходной информации;

сложность организации контроля входной и выходной информации;

использования стандартных модулей и типовых задач.

Трудоемкость разработки программного обеспечения решения задачи можно рассчитать по формуле:

t = to + tи+ ta + tп+ tотл+ tд,

где

to - затраты труда на подготовку описания задачи;

tи - затраты труда на исследование алгоритма решения задачи;

ta - затраты труда на разработку блок-схемы алгоритма;

tп - затраты труда на программирование по готовой блок-схеме;

tотл - затраты труда на отладку программы на ЭВМ;

tд - затраты труда на подготовку документации.

Составляющие затрат труда, в свою очередь, можно определить через условное число операторов в разрабатываемом программном изделии. В их число входят те операторы, которые необходимо написать программисту в процессе работы над задачей с учетом возможных уточнений в постановке задачи и совершенствования алгоритма. Условное число операторов Q в программе задачи может быть определено по формуле:

Q = q*c* (1 + p),

где q - предполагаемое число операторов;

с - коэффициент сложности программы;

p - коэффициент коррекции программы в ходе ее разработки.

Кроме того, используются коэффициенты квалификации разработчика k и увеличения затрат труда вследствие недостаточного или некачественного описания задачи В.

Коэффициент сложности задачи c характеризует относительную сложность программы по отношению к так называемой типовой задаче, реализующей стандартные методы решения, сложность которой принята равной единице (величина с лежит в пределах от 1,25 до 2); коэффициент коррекции программы p - увеличение объема работ за счет внесения изменений в алгоритм или программу по результатам уточнения постановок и описаний ее, изменения состава и структуры информации, а также уточнений, вносимых разработчиками для улучшения качества самой программы без изменения постановки задачи (величина p находится в пределах 0,05...0,1); коэффициент квалификации разработчика k - степень подготовленности исполнителя к порученной ему работе (он определяется в зависимости от стажа работы и составляет: для работающих до двух лет - 0,8; от двух до трех лет - 1,0; от трех до пяти лет - 1,1-1,2; от пяти до семи - 1,3-1,4; свыше семи лет - 1,5-1,6); коэффициент увеличения затрат труда вследствие недостаточного описания задачи В - качество постановки задачи, выданной для разработки, в связи с тем, что задачи, как правило, требуют уточнения и некоторой доработки (этот коэффициент в зависимости от сложности задачи принимается от 1,2 до 1,5).

Затраты труда на подготовку описания задачи to точно определить невозможно, так как это связано с творческим характером работы. Затраты труда на изучение описания задачи tи и с учетом уточнения описания и квалификации программиста могут быть определены по формуле, чел-ч:

tи= Q* B/ (75¸ 85) k,


Затраты труда на разработку алгоритма решения задачи ta рассчитывается по формуле, чел-ч:

ta= Q / (20¸ 25) k,

Затраты труда на составление программы по готовой блок-схеме tп определяется по формуле, чел-ч:

tп= Q / (20¸ 25) k,

Затраты труда на отладку программы на ЭВМ tотл рассчитывается по следующим формулам, чел-ч:

при автономной отладке одной задачи

tотл= Q / (4¸ 5) k,

при комплексной отладке задачи

tкотл= 1,5 tотл,

Затраты труда на подготовку документации по задаче tд определяются по формуле, чел-ч:

tд= tдр+ tдо,

где tдр= Q / (15¸20) k - затраты труда на подготовку материалов в рукописи; tдо= 0,75 tдр - затраты труда на редактирование, печать и оформление документации.

При создании программного продукта повышение уровня языка программирования способствует снижению затрат на непосредственную разработку программ. Компактность и обобщенное представление алгоритмов задач на языках высокого уровня позволяет исключить ряд классов ошибок и снизить вероятность других.

Трудоемкость разработки программного обеспечения в данном случае рассчитывается с учетом следующих значений коэффициентов:

q = 1000 (предполагаемое число операторов);

c = 1,3 (коэффициент сложности программы);

p = 0,08 (коэффициент коррекции программы в ходе ее разработки);

k = 0,8 (коэффициент квалификации разработчика);

B = 1,3 (затраты вследствие некачественного описания задачи).

Условное число операторов:

Q = 1000*1,3* (1+ 0,08) = 1404.

Затраты на изучение описания задачи:

tи = 1404 *1,3/ (80*0,8) = 1825,2/64 = 28,5 чел-ч.

Затраты труда на разработку алгоритма решения задачи:

ta = 1404 / (22*0,8) = 1404 /17,6 = 79,8 чел-ч.

Затраты труда на составление программы:

tп = 1404/ (22*0,8) = 79,8 чел-ч.

Затраты труда на отладку программы на ЭВМ:

tотл = 1404/ (4,5*0,8) = 1404/3,6 = 390 чел-ч.

Затраты труда на подготовку документации:

tд= (1404/ 18*0,8) + 0,75* (1404/18*0,8) = 97,5 + 0,75*97,5 = 170,6 чел-ч.

tобщ= 28,5 +79,8 +79,8 +390+170,6 = 748,7 чел-ч. = 93,6 чел-дн.

Определение состава исполнителей

Распределение трудоемкости по этапам разработки программного продукта сведено в таблицу 7.1.

Таблица 7.1 - Распределение трудоемкости между исполнителями.

Этапы разработки: Содержание работ: Трудоемкость этапа, ч.: Трудоемкость работ исполнителя, ч.: Должность исполнителя:
Техническое задание

Постановка задачи.

Предварительный выбор методов решения.

Определение требований, стадий и этапов разработки программы.

28,5 28,5 Инженер-программист 1 кат.
Эскизный проект

Сбор и изучение научно-технической литературы, нормативно-технической документации и других материалов, относящихся к теме разрабатываемой программы.

Разработка алгоритма решения задачи. Определение потоков входной и выходной информации.

79,8 79,8

Инженер-программист

1 кат.

Технический проект Изучение, анализ и обобщение подобранных материалов. Разработка технического проекта программы. 79,8 79,8 Инженер-программист 2 кат.
Рабочий проект Отладка программы (тестирование и исправление, обнаруженных недостатков), доработка. 390 390 Инженер-программист 2 кат.
Внедрение Подготовка документации (Описание алгоритмов работы, и инструкции по использованию модулей) 170,6 170,6 Инженер-программист 2 кат.

По данным кафедры АСОИУ, на котором производилась разработка, месячный оклад:

ведущего инженера (6000 рублей),

инженера-программиста 1 категории (5500 рублей),

инженера-программиста 2 категории (5000 рублей),

инженера-программиста 3 категории (4500 рублей),

оператор (3000 рублей).

Ведущий инженер:

Свед. инженер = (6000/22*8) *175,72 = 5990,45 руб.

Инженер-программист 1 категории:

Синженер-программист 1 категории = (5500/22*8) *255,52 = 7985 руб.

Инженер-программист 2 категории:

Синженер-программист 2 категории = (5000/22*8) *161,47 = 4587,22 руб.

Инженер-программист 3 категории:

Синженер-программист 3 категории = (4500/22*8) *78 = 1994,32 руб.

Оператор:

Соператора = (3000/22*8) *78 = 1329,55 руб.

Таким образом, основная заработная плата разработчиков равна:

Сосн = 5990,45 + 7985 + 4587,22 + 1994,32 + 1329,55 = 21886,54 руб.

 

7.2.3 Расчет дополнительной заработной платы разработчиков

К дополнительной заработной плате относятся выплаты за не проработанное время, предусмотренные законодательством по труду: оплата очередных отпусков, перерывов в работе кормящих матерей, льготных часов подростков, за время выполнения государственных и общественных обязанностей, выходного пособия при увольнении и др.

Величина дополнительной заработной платы определяется в размере 12% от основной заработной платы.

Сдоп = Сосн * 0,12 = 21886,54 * 0,12 = 2626,38 руб.

 

7.2.4 Отчисления на социальные нужды

Отчисления в социальные фонды учитываются в соответствии с действующим законодательством от всех выплат по заработной плате разработчиков. Они планируются в долях к сумме основной и дополнительной заработной плате в размере 26,3%:

Сф = (Сосн + Сдоп) * 0,263 = (21886,54 + 2626,38) * 0,263 = 6446,9 руб.

7.2.5 Расходы на приобретение дополнительных средств ВТ и ПО

Данная статья учитывает те средства ВТ и ПО, которые необходимо дополнительно приобрести только для данной конкретной разработки и которые в дальнейшем не будут использоваться.

При разработке программного продукта дополнительные средства ВТ и ПО не использовались.

 

7.2.6 Расходы по отладке программы

Расходы по отладке программы определяются, исходя из планируемых затрат машинного времени для отладки программы (tмв) и стоимости одного машино-часа работы ЭВМ, на которой ведется отладка (Смч, руб. /ч):

Стоимость одного машино-часа определяется по формуле:

где Сэ - годовые расходы, обеспечивающие функционирование вычислительного комплекса, руб. /год; Фвт - годовой плановый фонд времени работы вычислительного комплекса; Кз - коэффициент загрузки (не более 0,9-0,95).

Годовой плановый фонд времени работы вычислительного комплекса определяется по формуле:

Фвтном - Фпроф где Фном - номинальный фонд времени работы вычислительного комплекса; Фпроф - годовые затраты времени на профилактические работы (15% от Фном).

В году 248 рабочих дня по 8 рабочих часов:

Годовые расходы, обеспечивающие функционирование вычислительного комплекса определяются по формуле:

Сэ = Сосн. з. п + Сдоп. з. п + Сотч + Сам + Срем + См + Сэл+ Спр

где:

 - основная заработная плата сотрудника, производящего профилактические работы ЭВМ (из расчета, что профилактические работы проводятся 2 раза в месяц), руб.;

 - дополнительная заработная плата сотрудника, производящего профилактические работы ЭВМ (из расчета, что профилактические работы проводятся 2 раза в месяц), руб.;

 - отчисления на социальные нужды сотрудника, производящего профилактические работы ЭВМ (из расчета, что профилактические работы проводятся 2 раза в месяц), руб.;

 - сумма годовых амортизационных отчислений комплекса технических средств и стандартного пакета программного обеспечения, руб.;

 - затраты на текущий и профилактический ремонт технических и программных средств (принимаются 2,5 - 5% от стоимости комплекса), руб.;

 - затраты на расходные материалы, составляют 1% от стоимости ЭВМ, руб.;

 - стоимость силовой электроэнергии, потребляемой комплексом, руб.

Основная и дополнительная зарплата обслуживающего персонала равна нулю, так как профилактическое обслуживание выполняется каждым сотрудником самостоятельно и дополнительно не оплачивается.

Стоимость рабочего места разработчика с установленной операционной системой и необходимым программным обеспечением составляет 25000 руб. (произвольная сумма)

Для расчета годовых амортизационных отчислений коэффициент амортизации равен 0, 20.

Сэл - стоимость силовой электроэнергии, потребляемой комплексом, руб.:

Сэл = Сэ-э × W × Фвт

где Сэ-э - стоимость 1кВт за час электроэнергии (1,35 руб); W - мощность, поглощаемая комплексом (0,3 кВт); Фвт - годовой плановый фонд времени работы вычислительного комплекса (1984 ч).

Сэ =0+0+0+5000+625+250+803,52=6678,52 руб.

Таким образом, получаем:


Следовательно, расходы по отладке составят:

Сотл = 4,17 * 2448,3 = 10209,4 руб.

Накладные расходы Снакл. вычисляются в долях к основной заработной плате разработчиков (100%):

Снакл = Сосн * 1,00 = 78223 * 1 = 78223 руб.

 

7.2.7 Контрагентские расходы

Контрагентские расходы включаются в смету затрат в тех случаях, когда часть работ выполняется сторонними организациями, поскольку сторонние организации привлекать не планируется, то они равны нулю.

Себестоимость разработки программного продукта приведена в таблице 6.2.

Таблица 7.2.7 1 - Себестоимость разработки программного продукта.

Статьи затрат: Сумма затрат (руб):
1. Основная заработная плата разработчиков 21886,54
2. Дополнительная заработная плата разработчиков 2626,38
3. Отчисления на социальные нужды 6446,9
4. Расходы по отладке программ 10209,4
5. Накладные расходы 21886,54
Итого: 63055,76

Вывод: Себестоимость затрат на разработку программного продукта составляет 63055,76 рублей.


8. Безопасность и экологичность поекта

 

8.1 Анализ опасных и вредных производственных факторов на рабочем месте инженера

 

8.1.1 Микроклимат

Метеорологические условия рабочей среды (микроклимат) оказывают влияние на процесс теплообмена и характер работы. Микроклимат характеризуется температурой воздуха, его влажностью и скоростью движения, а также интенсивностью теплового излучения. Длительное воздействие на человека неблагоприятных метеорологических условий резко ухудшает его самочувствие, снижает производительность труда и приводит к заболеваниям.

Санитарные нормы микроклимата производственных помещений устанавливают оптимальные и допустимые величины показателей микроклимата для рабочей зоны производственных помещений предприятий с учётом тяжести выполняемой работы и периодов года.

В производственных помещениях, в которых работа с использованием ПЭВМ является основной (диспетчерские операторские, расчетные, кабины и посты управления, залы вычислительной техники и др.) и связана с нервно-эмоциональным напряжением, должны обеспечиваться оптимальные параметры микроклимата для категории работ 1а и 1б в соответствии с действующими санитарно-эпидемиологическими нормативами микроклимата производственных помещений. На других рабочих местах следует поддерживать параметры микроклимата на допустимом уровне, соответствующем требованиям указанных выше нормативов.

Представим две таблицы (согласно СанПиН 2.2.4 548-96. Гигиенические требования к микроклимату производственных помещений): оптимальные величины показателей микроклимата на рабочих местах производственных помещений (таблица 1); допустимые величины показателей микроклимата на рабочих местах производственных помещений (таблица 2).

Таблица 8.1.1

Период года Категория работ Температура воздуха, °С Температура поверхностей, °С Относительная влажность воздуха,% Скорость движения воздуха, не более, м/с
1 2 3 4 5 6
Холодный период года 21 - 23 20 - 24 60 - 40 0,1
Теплый период года 22 - 24 21 - 25 60 - 40 0,1

Таблица 8.1.2

Период года Категория работ Температура воздуха, °С Температура поверхностей, °С Относительная влажность воздуха,% Скорость движения воздуха, м/с
диапазон ниже оптимальной величины диапазон выше оптимальной величины диапазон температур воздуха ниже оптимальной величины, не более диапазон температур воздуха выше оптимальной величины, не более
1 2 3 4 5 6 7 8
Холодный период года I б 19,0 - 20,9 23,1 - 24,0 18,0 - 25,0 15 - 75 0,1 0,2
Теплый период года I б 20,0 - 21,9 24,1 - 28,0 19,0 - 29,0 15 - 75 0,1 0,3

Уровни положительных и отрицательных аэроионов в воздухе помещений, где расположены ПЭВМ, должны соответствовать действующим санитарно эпидемиологическим нормативам.

Содержание вредных химических веществ в воздухе производственных помещений, в которых работа с использованием ПЭВМ является вспомогательной, не должно превышать предельно допустимых концентраций вредных веществ в воздухе рабочей зоны в соответствии с действующими гигиеническими нормативами.

Содержание вредных химических веществ в производственных помещениях, в которых работа с использованием ПЭВМ является основной (диспетчерские, операторские, расчетные, кабины и посты управления, залы вычислительной техники и др.), не должно превышать предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе населенных мест в соответствии с действующими гигиеническими нормативами.

Содержание вредных химических веществ в воздухе помещений, предназначенных для использования ПЭВМ во всех типах образовательных учреждений, не должно превышать предельно допустимых среднесуточных концентраций для атмосферного воздуха в соответствии с действующими санитарно-эпидемиологическими нормативами.

 

8.1.2 Освещение рабочей зоны

Человек, производственные функции которого неразрывно связаны с ЭВМ, до 90% информации получает через органы зрения. Следовательно, важным и необходимым является обеспечение надлежащего уровня освещения рабочего места сотрудника.

Искусственное освещение в помещениях для эксплуатации ПЭВМ должно осуществляться системой общего равномерного освещения. В производственных и административно-общественных помещениях, в случаях преимущественной работы с документами, следует применять системы комбинированного освещения (к общему освещению дополнительно устанавливаются светильники местного освещения, предназначенные для освещения зоны расположения документов).

Освещенность (СНиП 23-05-95) на поверхности стола в зоне размещения рабочего документа должна быть 300 - 500 лк. Освещение не должно создавать бликов на поверхности экрана. Освещенность поверхности экрана не должна быть более 300 лк.

Следует ограничивать прямую блесткость от источников освещения, при этом яркость светящихся поверхностей (окна, светильники и др.), находящихся в поле зрения, должна быть не более 200 кд/м2.

Следует ограничивать отраженную блесткость на рабочих поверхностях (экран, стол, клавиатура и др.) за счет правильного выбора типов светильников и расположения рабочих мест по отношению к источникам естественного и искусственного освещения, при этом яркость бликов на экране ПЭВМ не должна превышать 40 кд/м2 и яркость потолка не должна превышать 200 кд/м2.

Показатель ослепленности для источников общего искусственного освещения в производственных помещениях должен быть не более 20. Показатель дискомфорта в административно-общественных помещениях - не более 40, в дошкольных и учебных помещениях - не более 15.

Яркость светильников общего освещения в зоне углов излучения от 50 до 90 градусов с вертикалью в продольной и поперечной плоскостях должна составлять не более 200 кд/м2, защитный угол светильников должен быть не менее 40 градусов.

Светильники местного освещения должны иметь не просвечивающий отражатель с защитным углом не менее 40 градусов.

Следует ограничивать неравномерность распределения яркости в поле зрения пользователя ПЭВМ, при этом соотношение яркости между рабочими поверхностями не должно превышать 3:1 - 5:1, а между рабочими поверхностями и поверхностями стен и оборудования - 10:1.

В качестве источников света при искусственном освещении следует применять преимущественно люминесцентные лампы типа ЛБ и компактные люминесцентные лампы (КЛЛ). При устройстве отраженного освещения в производственных и административно-общественных помещениях допускается применение металлогалогенных ламп. В светильниках местного освещения допускается применение ламп накаливания, в том числе галогенных.

Коэффициент запаса (Кз) для осветительных установок общего освещения должен приниматься равным 1,4.

Коэффициент пульсации не должен превышать 5%.

 

8.1.3 Производственный шум

Источниками шума на рабочем месте оператора ЭВМ являются как сами ЭВМ, так и периферийное оборудование.

Шум - неблагоприятно действующие на человека звуки. Он является хаотическим сочетанием звуков различной частоты и интенсивности. Источником шума в ЭВМ и периферийном оборудовании являются колеблющиеся твердые части, к которым можно отнести системы вентиляции оборудования, дисководы, каретки и приводы принтеров. Так же источником высокочастотных шумов может являться электронная часть ЭВМ и периферийного оборудования.

Длительное воздействие интенсивного шума может привести к патологическому состоянию слухового органа, к его утомлению и возникновению профессионального заболевания - тугоухости, то есть к потере слуха. Шум вызывает изменения сердечно-сосудистой системы, сопровождаемое нарушением тонуса и ритма сердечных сокращений, изменение артериального давления, приводит к нарушению нормальной функции желудка. Особенно подверчена воздействию центральная нервная система. Отмечается изменение органов зрения, вестибулярного аппарата, увеличение внутричерепного давления, нарушение обменных процессов организма.

Нормирование шума осуществляется по предельному спектру шума и по уровню звука в Дб.

Таблица 8.1.3.1 - Допустимые уровни звукового давления (ГОСТ 12.1 003-83)

Частоты (Гц) 31,5 63 125 250 500 1000 2000 4000 8000 Дб
Уровни (Дб) 96 83 74 68 63 60 57 55 54 65
8.1.4 Электромагнитные излучения

Основным источником электромагнитных полей на рабочем месте оператора ЭВМ является электронно-лучевая трубка (ЭЛТ) дисплея. Электромагнитные поля оказывают специфическое воздействие на ткани человека как биологические объекты. Они изменяют ориентацию клеток или цепей молекул в соответствии с направлением силовых линий электрического поля, ослабляют биохимическую активность белковых молекул, нарушают функции сердечно-сосудистой системы, органов дыхания, пищеварения и некоторых биохимических показателей крови (изменяется соотношение эритроцитов и лейкоцитов крови, возникает лейкоцитоз). Электромагнитные поля неблагоприятно влияют на зрение, вызывают головную боль, нарушение сна, снижение аппетита, понижение артериального давления. Воздействие электромагнитных полей на человека зависит от величин следующих параметров:

напряжение электрического и магнитного полей;

величина потока энергии;

частота колебаний;

размер облучаемого тела.

Электробезопасность - это система организационных и технических мероприятий и средств, обеспечивающих защиту от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Источниками электростатического поля на рабочем месте программиста являются дисплей и периферийные устройства. Воздействие статического электричества на человека может проявляться в виде слабого, длительно протекающего тока или в форме кратковременного разряда через тело. Такой разряд вызывает у человека рефлекторное движение, что может привести к травмам. Систематическое воздействие электростатического поля повышенной напряженности отрицательно влияет на организм человека, вызывая функциональные изменения центральной нервной, сердечно-сосудистой и др. систем организма. Для ограничения вредного воздействия электростатического поля проводится его нормирование в соответствии с СанПиН 2.2.2/2.4 1340-03. "Гигиенические требования к персональным электронно-вычислительным машинам и организации работы".

Допустимые значения параметров неионизирующих электромагнитных излучений отражены в таблице 8.1.4: 1

Таблица 8.1.4 1

Параметр в диапазоне частот
5Гц-2кГц 2-400кГц
1. Напряженность электромагнитного поля на расстоянии 50 см вокруг видеодисплейного терминала по электрической составляющей должно быть не более 25В/м 2,5 В/м
2. Плотность магнитного потока должна быть не больше 250 нТл 25нТл
3. Поверхностный электростатический потенциал не должен превышать 500В

 

8.1.5 Тяжесть и напряженность трудового процесса

Напряжённость трудового процесса - это характеристика трудового процесса, отражающая преимущественную нагрузку на центральную нервную систему, т.е. определяется нервным, психоэмоциональным напряжением, длительностью и интенсивностью интеллектуальной нагрузки.

Для оценки напряжённости трудового процесса используют "Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса" Руководство Р 2.2.755-99.

По показателям напряжённости трудового процесса выделяют три класса условий труда:

класс 1 - оптимальный;

класс 2 - допустимый;

класс 3 - напряжённый труд.

Оценка напряженности труда инженера основана на анализе трудовой деятельности и её структуры, которые изучаются путем наблюдений в динамике всего рабочего дня, в течение одной недели. Анализ основан на учёте всего комплекса производственных факторов (стимулов, раздражителей), создающих предпосылки для возникновения неблагоприятных нервно-эмоциональных состояний (перенапряжения). Все факторы (показатели) трудового процесса имеют качественную или количественную выраженность и сгруппированы по видам нагрузок: интеллектуальные, сенсорные, эмоциональные, монотонные, режимные нагрузки.

При работе с компьютером оператор постоянно находится в положении сидя, поэтому он испытывает статические физические перегрузки: затекает спина, шея, мышцы плечевого пояса. В то же время ему явно недостаточно динамической физической нагрузки. Эти особенности определяют возможность такого заболевания, как гиподинамия. Гиподинамия - нарушение функций организма (опорно-двигательного аппарата, кровообращения, дыхания, пищеварения) при ограничении двигательной активности, снижении сил сопротивления мышц. Малоподвижный образ деятельности приводит к снижению уровня физического развития организма, возникновению избыточного веса и, в результате, приводит к развитию заболеваний сердечно-сосудистой системы. Статические перегрузки ведут к таким заболеваниям, как искривление позвоночника, остеохондроз, радикулит и другие.

Умственное перенапряжение. Умственная деятельность (как и мышечная) - прежде всего деятельность центральной нервной системы, ее высшего отдела - коры головного мозга. При умственной работе увеличивается потребление кислорода мозгом в 15-20 раз по сравнению с физической работой. Для умственной работы требуется значительное нервно-эмоциональное напряжение, поэтому возможны значительные изменения кровяного давления, пульса, повышение уровня сахара в крови. Длительная работа такого характера может привести к заболеванию, в частности сердечно сосудистым и некоторым др. заболеваниям.

Перенапряжение анализаторов. Центральная нервная система получает информацию от внешнего мира, внешней среды с помощью чувствительных аппаратов (анализаторов), воспринимающих сигналы. Основная характеристика анализаторов - высокая чувствительность; хотя не всякий раздражитель, действующий на анализатор, вызывает ощущение. Чтобы ощущение проявилось, необходима определенная интенсивность раздражителя. Всякое воздействие, превышающее предел интенсивности, вызывает боль и нарушение деятельности анализаторов. Перенапряжение анализаторов может привести к стрессам.

Большое значение имеет цветовое решение при оформлении помещения. Психофизиологическое воздействие цвета первый и наиболее важный фактор, учитываемый при выборе цветового решения. Учитывая характер работ инженера-администратора, следует выбирать неяркие, малоконтрастные оттенки, которые не рассеивали бы внимания в рабочей зоне. Так как работа требует спокойствия и сосредоточенности, предпочтительно использовать оттенки "холодных" цветов.

Располагать рабочее место, оборудованное дисплеем, необходимо таким образом, чтобы в поле зрения инженера-оператора не попадали окна или осветительные приборы. Они также не должны находиться непосредственно за спиной.

Таблица 8.1.5 1 Параметры рабочего места

Параметры Значения параметров Реальные значения
Высота сидения 400-500мм 450
Высота клавиатуры 600-750мм 700
Удаленность клавиатуры >=80мм 80
Высота от стола до клавиатуры 20мм 20
Удаленность экрана 500-700мм 600
Высота рабочей поверхности >=600мм 680
Угол наклона экрана 0-3 град 15
Наклон подставки для ног 0-25град 0
Угол наклона клавиатуры 7-15град 15
8.2 Меры по снижению и устранению опасных и вредных факторов

В помещениях, оборудованных ПЭВМ, проводится ежедневная влажная уборка и систематическое проветривание после каждого часа работы на ПЭВМ.

Рабочие столы следует размещать таким образом, чтобы видеодисплейные терминалы были ориентированы боковой стороной к световым проемам, чтобы естественный свет падал преимущественно слева.

Для освещения помещений с ПЭВМ следует применять светильники с зеркальными параболическими решетками, укомплектованными электронными пускорегулирующими аппаратами (ЭПРА). Допускается использование многоламповых светильников с электромагнитными пускорегулирующими аппаратами (ЭПРА), состоящими из равного числа опережающих и отстающих ветвей.

Применение светильников без рассеивателей и экранирующих решеток не допускается.

При отсутствии светильников с ЭПРА лампы многоламповых светильников или рядом расположенные светильники общего освещения следует включать на разные фазы трехфазной сети.

Общее освещение при использовании люминесцентных светильников следует выполнять в виде сплошных или прерывистых линий светильников, расположенных сбоку от рабочих мест, параллельно линии зрения пользователя при рядном расположении видеодисплейных терминалов. При периметральном расположении компьютеров линии светильников должны располагаться локализовано над рабочим столом ближе к его переднему краю, обращенному к оператору.

Для обеспечения нормируемых значений освещенности в помещениях для использования ПЭВМ следует проводить чистку стекол оконных рам и светильников не реже двух раз в год и проводить своевременную замену перегоревших ламп.

Методы защиты от электромагнитных излучений: защитные экраны и увеличение расстояния между оператором и экраном.

Исходя из требований СниП 2.04.05-86 ("Отопление, вентиляция и кондиционирование воздуха") приходим к выводу, что необходима вентиляция и кондиционирование в летнее время года.

Снижение уровня шума, проникающего в производственное помещение извне, может быть достигнуто увеличением звукоизоляции ограждающих конструкций, уплотнением по периметру притворов окон, дверей.

 

8.2.1 Психофизиологические факторы

Делятся на две группы: физические перегрузки (статические и динамические) и нервно-психические (умственное перенапряжение, перенапряжение анализаторов, монотонность труда, эмоциональные перегрузки).

Монотонность - психическое состояние человека, вызванное однообразием восприятия или действий. Общие признаки для всех видов монотонии - перегрузка информацией при выполнении работы, или наоборот, ее недостаток, что влияет на функциональное состояние человека.

Монотонная работа вызывает переоценку продолжительности рабочего времени, и отрицательно сказывается и на эффективности производства: ухудшаются производственные показатели, повышаются травматизм и аварийность.

Основные меры по уменьшению влияния монотонности на человека: осуществлять перевод оператора с выполнения одного действия на другое; применять оптимальные режимы труда и отдыха в течение рабочего дня (целесообразны частые, но короткие перерывы - от 10 до 15 минут каждый час); ритм работы должен изменяться в течение рабочего дня и соответствовать индивидуальным качествам оператора.

 

8.2.2 Мероприятия по снижению повышенного уровня шума на рабочих местах

Снижение шума, создаваемого на рабочих местах внутренними источниками, а также шума, проникающего извне, осуществляется следующими методами: уменьшением шума в источнике; рациональной планировкой помещения; уменьшением шума по пути его распространения.

Рекомендуется использовать новое менее шумное оборудование. Например, шумные матричные принтеры могут быть заменены бесшумными лазерными или менее дорогими струйными принтерами.


8.2.3 Мероприятия по устранению недостаточной освещенности рабочей зоны

Помещения с ПЭВМ должны иметь естественное и искусственное освещение.

Для общего освещения помещений лучше использовать люминесцентные лампы.

В целях устранения бликов отражения поверхность экрана обрабатывается различными способами (кислотой, нанесением рассеивающих покрытий) или используются специальные фильтры. Для общего освещения лучше использовать потолочные или встроенные светильники с люминесцентными лампами. Источники света рекомендуются нейтрально-белого или теплого белого цвета. Световой поток от газоразрядных ламп по спектральному составу близок к естественному освещению и поэтому более благоприятен для зрения. Однако есть и недостаток эти лампы имеют пульсацию светового потока.

8.3 Расчет искусственного освещения

 

8.3.1 Расчёт освещения в помещении люминесцентными лампами

Помещение - преподавательская 32,175 м2

Общие сведения

Освещение - одно из важнейших технических средств обеспечения безопасности жизнедеятельности человека и сохранения его здоровья. По конструктивному исполнению искусственное освещение делится на системы: одного общего освещения и комбинированного, включающего общее и местное.

Источники света подразделяются на две группы:

Тепловые (лампы накаливания).

Газоразрядные (люминесцентные) - низкого и высокого давления.

При расчётах искусственного освещения применяют два метода:

Метод коэффициента использования светового потока, который используется для расчёта общего освещения.

Точечный метод (расчёт местного освещения).

При установке люминесцентных ламп, в связи с небольшим диапазоном их мощностей, заранее выбирают лампу, а затем определяют их необходимое количество n.

где

кз - коэффициент запаса;

Z - коэффициент неравномерности освещения;

Eн - нормируемая освещённость, лк;

S - площадь помещения, м2;

n - количество светильников;

коэффициент использования светового потока, который зависит от коэффициентов отражения света поверхностями помещения, от геометрических размеров помещения (индекса), от типа светильника и характеризуется отношением полезного светового потока к суммарному, %.

Следующий этап проектирования осветительной установки - выбор наиболее рационального расположения светильников.

В начальной стадии расположение светильников определяется, исходя из их наивыгоднейшего размещения, а затем расположение светильников корректируется с учётом их возможного размещения по длине, по ширине помещения и отстояния от стен.


8.3.2 Расчёт общего освещения производится методом коэффициента использования светового потока при установке люминесцентных ламп для производственного помещения

Исходные данные

Наименование помещения преподавательская 32,175 м2

Вид рассчитываемого освещения: общее в составе комбинированного.

Размеры помещения:

Длина L, м - (L>B или L=B) 5,85

Ширина В, м 5,5

Высота H, м 2,95

Нормативная освещённость Ен, лк 300

Коэффициент запаса кз1,8

Марка предварительно выбранной лампы ЛДЦ - 40

Световой поток лампы Ф, лм1520

Мощность лампы N, Вт40

Количество ламп в светильнике nл (nл =2 или nл=1) 2

Тип светильника ЛДЦ - 40

Расстояние от потолка до светильника (свес) hс, м 0,2

Расстояние от пола до рабочей поверхности hр, м 0,74

Высота подвеса светильника hп, м 2,01

Коэффициент неравномерности освещения Z (1,1-1,2) 1,1

Коэффициенты отражения света,%

потолок 70

стены 50

пол 10

Индекс помещения i1,4103

Коэфф. использования светового потока50

Расчёт количества светильников

Необходимое количество светильниковn12

Предварительный выбор расположения светильников

Наивыгоднейшее расстояние между светильниками l1,6

Число светильников по длине помещенияnL3,6

Число светильников по ширине (число рядов) nB3,4

Расстояние от стен до крайних светильникова (оптим) 0,8

Принятое расположение светильников

Принятое количество светильников (по H75) 9

Расстояние между светильниками по длине l, м1,5

Расстояние между рядами по ширине с, м 1

Число светильников по длине помещения nд3

Число светильников по ширине (число рядов) nш3

Расстояния от стен до крайних светильников:

по ширине а1 - 1,75

по длине а2 - 1,425

Мощность осветительной установки для системы общего освещения помещения люминесцентными лампами в составе комбинированного или общего Nоб, кВт0,72

Рисунок 8.3.1 К выбору наивыгоднейшего размещения светильников

Результаты расчёта освещения:

Помещение преподавательская 32,175 м2

Нормативная освещённость Eн, лк300

Тип светильника ЛДЦ - 40

Марка люминесцентной лампы ЛДЦ - 40

Мощность лампы, Вт40

Принятое количество светильников9

Число светильников по длине помещения3

Число рядов светильников3

Расстояние между светильниками:

по длине l, м1,50

по ширине с, м1

Мощность осветительной установки, кВт0,72


9. Защита в чрезвычайных ситуациях   9.1 Понятие устойчивости объекта

Устойчивость объектов - это их способность противостоять поражающим факторам ЧС, сохраняя эксплуатационные функции. Под устойчивостью объектов экономики понимают их способность осуществлять перевозки, функционирование промышленных предприятий в условиях воздействия поражающих факторов ЧС.

В данном разделе рассматривается действие взрывной волны. В следствие взрывов хранилищ с топливом, резервуаров с горючим и др. ударная волна несёт значительные разрушения и гибель людей.

Под объектами экономики понимают жилые и производственные здания, сооружения, цеха, транспортные средства и др. Объекты делят на элементы: станки, сварочные агрегаты и т.п. Если предусмотреть мероприятия по повышению устойчивости объектов, то можно предотвратить опасные последствия или уменьшить нанесённый ущерб от аварий. Для этого необходимо выявить и оценить наиболее слабые, неустойчивые объекты и элементы.

 

9.2 Избыточное давление взрыва

Ударная волна - это область резкого сжатия среды, которая в виде сферического слоя распространяется во все стороны от места взрыва. Образовавшийся слой сжатого воздуха называется фазой сжатия-С, а зона пониженного давления - фазой разряжения Р (рис.2). Избыточное давление во фронте ударной волны Ризб. - это разность между максимальным давлением взрыва Рф и нормальным атмосферным давлением Ратм.




(9.2.1)

Рисунок 9.2.1 Распространение ударной волны

Величиной Ризб. определяется характер разрушений объектов, что обусловлено их удалением от места взрыва. Разрушение объектов ударной волной делят на четыре степени: слабые, средние, сильные и полные. При сильных и полных разрушениях объекты восстановлению не подлежат.

Зоны действия взрыва. При рассмотрении особенностей взрыва выделяют три зоны.

1. Зона бризантного действия (детонационная), где скорость распространения волны составляет несколько тысяч метров за секунду. В этой зоне происходит дробление материалов.

Радиус зоны определяется зависимостью:

 (9.2.2)

гдеRбр - радиус первой зоны, м;

Q - количество топливно-воздушной смеси (ТВС), т.

В этой зоне избыточное давление равно 1200кП, что ведёт полному разрушению объектов.

2. Зона действия продуктов взрыва, осколков конструкций (зона "огненного" шара). Радиус поражения в этой зоне:

 (9.2.3)

Избыточное давление равно 300кП, что также ведёт к полному разрушению объектов.


Информация о работе «Комплексная информационная автоматизированная система "Кафедра"»
Раздел: Информатика, программирование
Количество знаков с пробелами: 117645
Количество таблиц: 31
Количество изображений: 47

Похожие работы

Скачать
200314
8
2

... , практически, не используются. Проблема информатизации Минторга может быть решена путем создания Автоматизированной Информационной системы Министерства Торговли РФ (АИС МТ РФ) в соответствии с настоящим Техническим предложением.   ГЛАВА 2. МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КОМПЛЕКСА ЗАДАЧ "СИСТЕМА ДОКУМЕНТООБОРОТА УЧЕРЕЖДЕНИЯ”. функции поиска и архивации 2.1. Постановка задачи и её спецификация ...

Скачать
105005
7
33

... труда отдела кадров; – уменьшения затрат на содержание отдела кадров. 2.2 Общие сведения Разрабатываемая АС имеет полное наименование автоматизированная система управления персоналом «Отдел кадров». АС «Отдел кадров» служит для автоматизации работы отдела кадров ООО «Радуга». 2.3 Описание предметной области Слово "учет" подразумевает прием сотрудника на работу, отслеживание его ...

Скачать
138680
12
12

... приведения к базовому узлу, метод удельных весов, метод учета затрат на единицу веса изделия, расчет себестоимости по статьям затрат. В данном проекте приводится расчет себестоимости разработки автоматизированной системы управления торговым предприятием. (АСУТП). АСУТП служит для ведения учета торговой деятельности в Интернет и на аукционе EBay. Из основных преимуществ перед конкурентами стоит ...

Скачать
31898
26
21

... ФУНКЦИИ 4.3 ТЕСТИРОВАНИЕ РАЗРАБОТАННОГО ПО 5 РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ ЗАКЛЮЧЕНИЕ БИБЛИОГРАФИЯ ПРИЛОЖЕНИЯ 1 ВВЕДЕНИЕ Целью курсового проекта является разработка технического и программного обеспечения автоматизированной системы научных исследований (АСНИ). АСНИ предназначена для спектрального анализа данных, поступающих от первичных преобразователей физических величин, характеризующих ...

0 комментариев


Наверх