1.   Содержание: так как

, B доминирует A.

2.   Равенство: так как

, следовательно A не равно B.

3.   Пересечение: .

4.   Объединение: .

5.   Разность: .

6.   Произведение:

7.   Отрицание: ,

.

8.   Дизъюнктивная сумма: .

Пример 2.

Пусть:

;

.

Решение:

1.   Содержание: так как

, B доминирует A.

2.   Равенство: так как

, следовательно A равно B.

3.   Пересечение:

.

4.   Объединение:


.

5.   Разность:

.

6.   Произведение

7. Отрицание:

,

.

7.   Дизъюнктивная сумма:

.


2. Математические и алгоритмические основы решения задачи

2.1 Понятие нечеткого множества

Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество — понятие, введённое Лотфи Заде в 1965 г. в статье "Fuzzy Sets" (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале [0,1], а не только значения 0 или 1.

Под нечётким множеством A понимается совокупность

,

где— X универсальное множество, а  — функция принадлежности (характеристическая функция), характеризующая степень принадлежности элемента нечёткому множеству A.

Функция  принимает значения в некотором вполне упорядоченном множестве M. Множество M называют множеством принадлежностей, часто в качестве M выбирается отрезок . Если , то нечёткое множество может рассматриваться как обычное, чёткое множество.

2.2 Операции над нечеткими множествами

Пусть A и B - нечеткие множества на универсальном множестве E.


2.2.1 Содержание

Говорят, что A содержится в B, если

.

Обозначение: A М B.

Иногда используют термин "доминирование", то есть в случае если A М B, говорят, что B доминирует A.

2.2.2 Равенство

A и B равны, если

.

Обозначение: A = B.

2.2.3 Пересечение

Пересечением нечётких множеств A и B называется наибольшее нечёткое подмножество, содержащееся одновременно в A и B:

.

2.2.4 Объединение

 

- наименьшее нечеткое подмножество, которое включает как А, так и В, с функцией принадлежности:


2.2.5 Разность

 с функцией принадлежности:

.

2.2.6 Произведение

Произведением нечётких множеств A и B называется нечёткое подмножество с функцией принадлежности:

.

2.2.7 Отрицание

Отрицанием множества A при  называется множество  с функцией принадлежности:

.


Информация о работе «ЛИСП-реализация основных операций над нечеткими множествами»
Раздел: Информатика, программирование
Количество знаков с пробелами: 14282
Количество таблиц: 0
Количество изображений: 14

Похожие работы

Скачать
46891
1
1

... распределения – сегодня одна из главных проблем производственных организаций. Таким образом, необходима автоматизация интеллектуальной деятельности человека в производственных системах управления. 2. Представление знаний в ПСИИ Важное место в теории искусственного интеллекта занимает проблема представления знаний, являющаяся, по мнению многих исследователей, ключевой. Что же представляют собой ...

Скачать
71422
1
0

... программирование [application programming] — разработка и отладка программ для конечных пользователей, например бухгалтерских, обработки текстов и т. п.   Системное программирование [system programming] — разработка средств общего программного обеспечения, в том числе операционных систем, вспомогательных программ, пакетов программ общесистемного назначения, например: автоматизированных систем ...

Скачать
119487
12
22

... . В частности: (8) Из (7) и (8) следует, что в M нет двух неравных натуральных чисел. Доказательство закончено. 3.2 Рекурсия   Особое место для систем функционального программирования приобретает рекурсия, поскольку она позволяет учитывать значения функции на предыдущих шагах. С теоретической точки зрения рекурсивные определения являются теоретической основой всей современной ...

Скачать
161967
0
2

... систем электронной торговли; 5. Устранение промежуточных звеньев в системе интеграции организация - внешняя среда. 31. основные разделы искусственного интеллекта Одно из направлений информатики - интеллектуализация информационных систем. Интеллектуальные системы и технологии применяются для тиражирования профессионального опыта и решения сложных научных, производственных и экономических ...

0 комментариев


Наверх