Вступ
На даний момент велика роль в розвитку сучасного світу відводиться підвищенню технічного рівня обчислювальної техніки, пристроїв і засобів автоматизації. Це передбачає розвиток виробництва і широке використання промислових роботів, систем автоматичного управління з використанням мікропроцессорів і мікро-ЕОМ, створення гнучких автоматизованих виробництв. Розв'язок цих задач потребує широкого упровадження в інженерну практику методів обчислювальної математики.
Обчислювальна математика заснована на чисельних методах, придатних до застосування при розрахунках на ЕОМ. Сучасні ЕОМ дозволили дослідникам значно підвищити ефективність математичного моделювання складних задач науки і техніки. Нині методи досліднення проникають практично в усі сфери людської діяльності, а математичні моделі стають засобами пізнання.
Значення математичних моделей неперервно зростає у зв'язку з тенденціями до оптимізації технічних пристроїв і технологічних схем планування експерименту. Реалізація моделей на ЕОМ здійснюється за допомогою різноманітних методів обчислювальної математики, яка неперервно удосконалюєтьтся.
В даній роботі розглянуто розв’язання крайової задачі методом “стрілянини” (на прикладі диференційного рівняння другого порядку).
Існує багато методів для знаходження розв’язків диференційних рівнянь через елементарні чи спеціальні функції. Такі методи називають аналітичними, чи класичними, але в більшості задач вони чи зовсім непридатні, чи приводять до дуже складних розрахунків. При заданні коефіціентів чи функцій в диференційних рівняннях у вигляді таблиць експерементальних даних використання класичних методів принципово неможливо. Це обумовлює важливість чисельних методів, що розглядають рішення диференційних рівнянь, це є основою при складанні алгоритмів та програм для ЕОМ.
Звичайне диференційне рівняння має нескінчену множину розв’язків. Для відшукання якогось конкретного розв’язку потрібні додаткові умови. Ці умови можуть бути різними. У випадку, коли додаткові умови задаються при одному значенні незалежної змінної, має місце задача Коші (задача з початковими умовами). Якщо ж умови задаються при двох чи більше значеннях незалежної змінної, то задача називається крайовою. В задачі Коші додаткові умови називаються початковими, а в крайовій – граничними. При рішенні цих задач використовуються різні методи та алгоритми.
Сформулюємо задачу Коші. Нехай дано диференційне рівняння: та початкова умова . Потрібно знайти функцію на відрізку від до , таку, що задовольняє як дане рівняння, так і початкову умову.
Крайову задачу розглянемо на прикладі звичайного диференційного рівняння другого порядку при граничних умовах . Методи розв’язків рівнянь більш високих порядків аналогічні.
2.1 Методи розв’язку задачі Коші.
В основі чисельних методів розв’язку диференційних рівнянь лежить розклад функції в ряд Тейлора в околі вихідної точки : , де - відстань (крок) між вихідною точкою та точкою , в якій шукають розв’язок.
Причому в різних методах враховується різна кількість членів розкладу, що визначає точність розрахунків. Вважають, що порядок похобки рівний , якщо існує таке число , та , де - локальна помилка; - крок дискретизації.
Число не залежить від номера кроку та його велечини, а визначається похідними і довжиною інтервала. При апроксимації розв’язку рядами Тейлора воно зв’язане зі степінню членів ряду, що відкидаються.
Методи розв’язку задачі Коші можна розділити на дві групи: однокрокові, в яких для знаходження слідуючої точки на кривій потрібна інформація лише про один попередній крок (методи Ейлера та Рунге-Кутта); багатокрокові (прогнозу та корекції), в яких для знаходження слідуючої точки на кривій потрібна інформація більш ніж про одну із попередніх точок.
2.2 Вибір методу розв'язання задачі Коші
Порівнюючи ефективність однокрокових і багатокрокових методів, виділяють такі особливості:
1. Багатокрокові методи вимагають більшого об'єму пам'яті ЕОМ, тому що оперують більшою кількістю початкових даних.
2. При використанні багатокрокових методів існує можливість оцінки похибки на кроці, тому значення кроку обирається оптимальним, а
в однокрокових — з деяким запасом , що знижує швидкодію.
3. При однаковій точності багато крокові методи вимагають меншого обсягу обчислень. Наприклад, в методі Рунге-Кутта четвертого порядку точності доводиться обчислювати чотири значення функції на кожному кроці, а для забезпечення збіжності методу прогнозу і корекції того ж порядку точності - достатньо двох.
4. Однокрокові методи на відміну від багатокрокових дозволяють одразу почати розв'язання задачі ("самостартування") і легко змінювати крок в процесі обчислень.
Перед початком розв'язання задачі необхідно провести перевірку на "жорсткість" і у випадку позитивного результату використати спеціальні методи. Якщо задача Коші дуже складна, то зазвичай перевага надається методу прогнозу і корекції, який має до того ж більш високу швидкодію. Початок розв'язання задачі при цьому проводиться за допомогою однокрокових методів. Якщо для обчислення чергового значення уі вимагається більш ніж дві ітерації або якщо помилка зрізання дуже велика, то необхідно зменшити крок Н. З іншого боку при дуже малій похибці зрізання можна збільшити крок, тим самим підвищити швидкодію, але при цьому весь процес розв'язання треба починати спочатку. Інколи на практиці вимагається мінімізувати час підготовки задачі до розв'язання. Тоді доцільно використовувати методи Рунге-Кутта.
На закінчення слід відзначити, що велике значення для ефективного розв'язання задачі мають досвід, інтуїція і кваліфікація користувача як при постановці задачі, так і в процесі вибру методу розробки алгоритму і програми для ЕОМ. При цьому часто зручно користуватись вже готовими програмними засобами, які є в наявності (наприклад, в пакетах МАРLЕ, МАТНЕМАТIКА).
2.3Методи розв'язання крайових задач
Методи розв'язання крайових задач розглядаються на прикладі звичайного диференціального рівняння другого порядку
при граничних умовах у(а) = А , у(в) - В. Методи розв'язання крайових задач розділяють на дві групи: методи, що побудовані на заміні розв'язання крайової задачі розв'язанням декількох задач Коші (методи "стрілянини") та різницеві методи.
... не встановлена. Імовірно, його створив Марен ле Буржуа з Лізьє (Франція) у першому десятилітті 18 ст. У цьому ж столітті ударний замок одержав повсюдне поширення і встановлювався на стрілецькій зброї армій усього світу до середини 19 ст. Конструкція і принцип дії. Шептало в цьому замку монтувалося на внутрішній стороні замкової дошки і з'єднувалося з щиколоткою (диском), що поверталася при ...
... у провадженні судових експертиз та попередніх досліджень за завданнями слідчого або органу дізнання. Крім того, техніко-криміналістичні засоби та методи в залежності від мети поділяють на такі, які використовуються для: — збирання речових доказів (виявлення, фіксація, вилучення та упаковка); — дослідження доказів; — профілактики. Іноді у межах зазначеної класифікації виділяють і засоби та ...
... ДП-25 у відділенні. ДП-25 застосовувалися при захопленні об'єкту, мови, прикриття при винесенні противника в групі забезпечення. Стрічка вішалася на грудях автоматника - 10 гранат. Особливості при стрільбі з підствольного гранатомета ГП-25 Натискати на спуск ГП-25 правою рукою незручно, занадто далеко він розташований. Щоб було зручніше стріляти з "підствольника", в плече слід пручатися не ...
... гарного - теж погано, адже не завжди чим яскравіше, тим краще, тут теж є свої границі, коли захід стає стомлюючим і навіть починає дратувати. 1.3. Анімаційні технології, анімаційні послуги в молодіжному туризмі і їх застосування Аніматорами називають фахівців із організації дозвілля на туристських підприємствах, в санаторно-курортних та інших оздоровчих установах. Найчастіше, вимовивши слово ...
0 комментариев