Какие новые технологии мониторов заменят существующие и в каких областях. Объективно (по конкретным показателям) сравнить с популярными на сегодняшний день технологиями
1. ЖК-мониторы
Процесс изготовления
Процесс изготовления ЖК-панелей очень схож с производством полупроводников.
На стекло наносится слой хромовых проводников для создания проводящей структуры транзисторов и запоминающих конденсаторов. Затем добавляется тонкий слой оксида кремния, который будет работать в качестве диэлектрика для затворов транзисторов и конденсаторов. После этого для создания канала транзистора наносится слой аморфного кремния. Затем две зоны транзистора легируются N+ для создания стока и истока. Наконец, наносится слой металлических проводников, чтобы связать транзистор (слева) с запоминающим конденсатором (справа). Этот слой также обеспечивает подключение к металлической шине данных. Хромовая решётка, соединяющая все транзисторы в строчке, работает в качестве горизонтальной адресной линии. Наконец, весь комплекс покрывается оксидной плёнкой для защиты компонентов.
Так как транзистор на аморфном кремнии имеет не такие хорошие характеристики, как транзистор на легированной подложке, к решётке прикладывается отрицательное напряжение (-5 В), которое гарантирует, что транзистор открыт (выключен). Как только транзисторный слой будет нанесён, можно добавлять жидкие кристаллы.
Чтобы две стеклянные пластины не соприкасались друг с другом, добавляется специальный разделитель (spacer). Затем наносятся жидкие кристаллы и электроды из оксида индия и олова. После этого добавляются цветовые фильтры (в нашем случае зелёный), передняя стеклянная панель и ещё один поляризатор, ось которого перпендикулярна оси первого поляризатора.
Над транзистором наносится чёрный фильтр. Причина проста: в этой области напряжение не контролируется, в отличие от пространства под электродом. Оно зависит от напряжения в линии данных, которое может меняться даже тогда, когда наш пиксель вовсе не адресуется. Поэтому лучше "замазать" эту область, чтобы она не влияла на результат.
Преимущества и недостатки ЖК
Технология ЖК даёт явные преимущества в мире вычислительной техники. Она вышла в свет благодаря компьютерам и лишь потом была адаптирована в других сферах. Благодаря процессу литографии, взятому из полупроводниковой промышленности, пиксели могут быть очень маленькими. ЖК-мониторы сегодня стали серьёзной альтернативой громоздким ЭЛТ-дисплеям и скоро вытеснят их с рынка. Кроме того, в портативных и мобильных областях без ЖК просто нельзя обойтись. Впрочем, здесь набирают силы OLED-дисплеи (органические светодиоды, Organic Light-Emitting Diode), но пока они продвигаются вперёд крохотными шажками.
В целом, решения на основе ЖК стоят дешевле плазменных моделей, но здесь во внимание следует принимать и фактор маркетинга. Если на рынке наблюдается недостаток панелей, то даже недорогие технологии могут дать продукт с астрономической ценой. Мы наблюдали подобное явление около полутора лет тому назад.
Что касается качества картинки, то ЖК-мониторы обеспечивают большую яркость по сравнению с ЭЛТ-дисплеями. Кроме того, пиксели ЖК-мониторов не мерцают, и даже на близком расстоянии вы сможете наслаждаться картинкой.
ЖК-телевизоры отличаются великолепной стабильностью картинки - вы можете сидеть вплотную к телевизору, и ваши глаза не устанут. Кроме того, яркость просто великолепна, а картинка - очень резка. Добавьте к этому разумные цены (если на рынке достаточно панелей) и уменьшенные габариты - и вы поймёте всю прелесть ЖК.
Недостатки
К сожалению, углы обзора ЖК-телевизоров не могут достичь уровня плазменных панелей, не говоря уже о ЭЛТ. Дело в том, что излучаемый подсветкой свет проходит через два поляризатора, и лишь затем покидает поверхность монитора. Однако в этой области производители немало продвинулись вперёд, и современные ЖК-панели обладают углами обзора, вполне достаточными для комнаты.
Искажение изображения на ЖК-мониторе при большом угле обзора |
Макрофотография типичной жк-матрицы. В центре можно увидеть два битых субпикселя (зелёный и синий). |
Контрастность ЖК остаётся ниже уровня ЭЛТ и плазменных панелей, но сегодня это уже не проблема. Существенным же недостатком можно считать недостаточно глубокий чёрный цвет. Как мы уже видели выше, пиксели ЖК-панели работают как световые переключатели - и они не идеальны, то есть часть света просачивается даже в закрытом состоянии. Даже когда переключатель полностью закрыт, и соответствующий суб-пиксель должен быть чёрным, некоторое количество света всё равно проходит. И в этой области у плазменных панелей и ЭЛТ есть большое преимущество - здесь чёрный цвет является по-настоящему чёрным.
Отметим и проблему времени отклика. Сама по себе, технология поворота кристаллов очень медлительна, в результате чего ЖК-панели хуже подходят для фильмов, чем плазменные телевизоры. Впрочем, в этой области прогресс не стоит на месте, и сегодня появились ЖК-мониторы, которые весьма отзывчивы, хотя до уровня ЭЛТ ещё далеко. В то же время, приемлемое время отклика уже достигнуто, поэтому вы сможете смотреть фильмы и телевизионные передачи без всяких помех. Так что проблема времени отклика, остро стоявшая ещё несколько лет назад, сегодня уже практически решена.
Наконец, так как "родное" разрешение ЖК-мониторов высоко, для просмотра телевизионных программ и фильмов требуется интерполяция пикселей, По крайней мере, пока в наши дома не придёт HDTV. ЖК-телевизоры осуществляют интерполяцию более-менее сносно, но чем больше диагональ дисплея, тем труднее это делать. Все производители сегодня работают над этой проблемой, и у 26" экранов уже достигнут приемлемый результат. Но до сих пор мы ещё не видели интерполированной картинки, которая бы нас удовлетворила. Впрочем, с распространением видео высокого разрешения (High Definition) эта проблема уже не будет существовать, поскольку картинка будет иметь то же разрешение, что и экран.
Компенсация времени отклика
Суть технологии компенсации времени отклика (RTC, Response Time Compensation) состоит в том, что при необходимости изменить состояние пикселя ЖК-панели на него на короткое время подается "разгонный" импульс напряжения, заставляющий кристаллы поворачиваться с максимально возможной скоростью. В момент, когда кристаллы достигают нужного положения, импульс прекращается, и на ячейку подается напряжение, необходимое для удержания этого положения.
Основная проблема с временем отклика – в квадратичной зависимости действующей на кристаллы силы от приложенного к ЖК-ячейке напряжения (или, точнее, от созданного этим напряжением электрического поля). Метод решения этой проблемы давно известен в технике под названием форсированный запуск.
Выше на графике сплошной линией обозначена временная диаграмма работы обычной ЖК-ячейки: красный цвет – приложенное к ней напряжение, синий – яркость этой ячейки (пусть для простоты нулевое напряжение означает нулевую яркость). В некоторый момент времени монитору требуется изменить яркость данной ячейки с нулевой на некоторое промежуточное (но не максимальное значение) – электроника монитора рассчитывает и подаёт на ячейку напряжение V0, соответствующее необходимому углу поворота жидких кристаллов; далее это напряжение удерживается постоянным до тех пор, пока не возникнет необходимость снова изменить яркость ячейки.
Однако можно поступить и иначе – этот вариант указан пунктирными линиями. При необходимости изменить яркость ячейки электроника монитора подаёт на неё такое напряжение, при котором кристаллы развернутся на заданный угол аккурат к началу следующего кадра. В новом же кадре напряжение будет снижено до уровня V0 – таким оно должно быть, чтобы удерживать заданный угол поворота кристаллов. В результате мы получаем монитор, для которого любой переход между любыми промежуточными полутонами может быть завершён ровно за один кадр – причём, прошу заметить, собственная частота кадров ЖК-матрицы совершенно не обязана зависеть от частоты кадров, установленной на видеокарте компьютера, а потому длительность этого кадра может быть и меньше стандартных для ЖК-мониторов 16,7 мс (частота кадровой развёртки 60 Гц).
Совершенно аналогично эта схема работает и при необходимости переключиться из яркого тона в более тёмный – за тем лишь исключением, что "разгонный импульс" теперь будет отрицательным. На рисунке выше он также показан пунктиром.
Схема RTC работает на самом низком уровне из возможных – с сигналом, поступающим уже непосредственно на матрицу. Дело в том, что величина разгонного импульса зависит только от того, в каком положении пребывают кристаллы в данный момент, и в какое положение их требуется развернуть.
Схема RTC является неотъемлемой принадлежностью монитора и в своей работе никак не связана ни с видеокартой, ни с драйверами, ни с операционной системой, ни с какими-либо ещё элементами внешнего окружения.
Очевидно, что из-за нелинейной и немонотонной зависимости времени переключения пикселя от градаций серого, между которыми он переключается, параметры разгонного импульса должны рассчитываться электроникой монитора каждый раз индивидуально, в зависимости от того, в каком состоянии пиксель находится в данный момент, и в какое состояние его надо переключить. Для этой цели в схеме RTC обязательно есть кадровый буфер, в котором хранится предыдущий кадр – при приходе же нового кадра он сравнивается с содержимым буфера, и для тех пикселей, значение которых изменилось, рассчитывается величина разгонного импульса.
Кроме описанного выше механизма "затормаживания" кристаллов существует и ещё один, менее очевидный – он связан с тем, что при повороте кристаллов меняется электрическая ёмкость ячейки, в которую они заключены. Ячейки ЖК-матрицы подключены к источнику питания не непрерывно – нужное напряжение на них устанавливается коротким импульсом с периодичностью кадровой развёртки, а после прохождения импульса поддерживается за счёт того, что каждая ячейка является конденсатором. К сожалению, ёмкость этого конденсатора не постоянна – она зависит от положения кристаллов.
Возможны, разумеется, два варианта – когда величина импульса занижена и, наоборот, когда она завышена. В первом случае никаких новых эффектов не появляется – лишь смаз изображения будет чуть больше, чем он мог бы быть, но, впрочем, всё равно намного меньше, чем на мониторах с аналогичными матрицами, но без RTC.
Второй случай представлен на картинке выше – сплошной линией обозначена нормальная работа RTC, а пунктирной – работа при завышенной величине импульса. Очевидно, что к концу первого кадра (когда разгонный импульс будет снят) яркость пикселя успеет не только достичь заданного уровня, но и превысить его. После снятия импульса яркость через некоторое время (определяемое инерционностью матрицы) опустится до нужного значения.
Интересен этот случай тем, что создаёт новый вид артефактов, в принципе невозможный на мониторах без RTC – на движущихся изображениях могут появляться полосы, более светлые, чем и сам движущийся объект, и фон. Ниже приведены две фотографии чёрной надписи, движущейся справа налево по серому фону: первая сделана на мониторе Samsung SyncMaster 194T, в котором используется обычная PVA-матрица без RTC – мы видим самое обычное "жидкокристаллическое" смазывание, причём, из-за особенностей PVA-матриц, очень сильное, надпись читается с большим трудом.
Вторая фотография снята ровно в тех же условиях, но на мониторе Samsung SyncMaster 930BF, сделанном на базе TN+Film-матрицы с RTC. Отлично видно, что чёрная надпись, двигаясь по серому фону, оставляет за собой отчётливую светлую тень:
В случае ошибки расчета импульса происходит пересвет пикселя, который отрицательно скажется на реальности цветопередачи и будет проявляться в виде послесвечения движущегося объекта.
Как показывает практика, все выпущенные на данный момент мониторы с RTC страдают этим недостатком, причём в разной степени – "промахи" могут составлять от единиц до десятков процентов.
Наибольшую пользу технология компенсации времени отклика принесёт – и уже приносит – технологиям PVA и MVA, для которых очень большое время отклика на переходах между полутонами всегда являлось серьёзной проблемой, делая эти мониторы пригодными фактически только для работы, но не для игр. Как мы видим, по крайней мере на новых моделях с PVA-матрицами, с помощью RTC удалось достичь очень существенного снижения времени отклика для большинства тонов, кроме самых тёмных – и, вероятно, по мере дальнейшего совершенствования схем RTC будет решена и эта проблема. Впрочем, уже сейчас можно наконец-то сказать, что мониторы на PVA-матрицах с RTC стали пригодны не только для работы, но даже и для многих динамичных игр – а это в сочетании с очень хорошими прочими параметрами и доступностью на рынке делает их весьма и весьма интересным выбором для домашнего использования.
Сейчас мы видим только первое мониторов с RTC, но даже они уже обеспечивают заметно лучшее время отклика, хоть и ценой появления нового типа артефактов. По мере же совершенствования схемотехники и алгоритмов работы RTC можно надеяться, что время отклика будет уменьшаться, а артефакты если и не исчезнут совсем, то станут пренебрежимо малыми.
Типы матриц с компенсацией времени отклика, используемые в мониторах, и их характеристики
Как уже мы неоднократно говорили, TFT дисплеи имеют два серьезных недостатка при сравнении с обычными ЭЛТ-мониторами:
Во-первых, когда Вы смотрите на TFT дисплей со стороны, Вы сразу же обнаружите катастрофическую потерю яркости и характерное изменение отображаемых цветов. Старые модели TFT дисплеев типично имели угол видимости 90°, т.е. 45° с каждой стороны. Пока на экран смотрит один человек, проблемы нет, однако, как только вокруг дисплея собирается несколько человек, Вам, как владельцу, придется выслушать много не добрых слов в адрес своего не дешевого монитора.
Во-вторых, при просмотре видео, иногда ощущается некоторая "заторможенность" пикселей, связанная с т.н. большим временем отклика. Несмотря на то, что современные уровни времени отклика значительно уменьшились по сравнению с тем, что можно было наблюдать несколько лет назад, "хвосты" иногда остаются.
С одной стороны все эти проблемы нельзя назвать серьезными, с другой, снижение цен и резкое поднятие популярности LCD, заставляет производителей постоянно развивать технологии.
Для частичного устранения этих недостатков разработано три основные технологии: TN+Film (скрученный кристалл + пленка), IPS (или 'Super-TFT') и VA (сюда входят и MVA и PVA). Рассмотрим характерные особенности этих типов матриц.
... для монитора на столе. За размеры монитора считают размер его экрана по диагонали. Для ЭЛТ стандартными являются размеры 14", 15", 17", 19", 21", 23", 24" (" – обозначение дюйма.) Для ЖК-мониторов – 13", 14", 15", 17", 19". Любой компьютер неизбежно приносит вредит здоровью. Одним из наиболее опасных компонентов компьютера является монитор. Наиболее вредными для здоровья являются ЭЛТ-мониторы ...
... продукт, который дает возможность изучения иностранных языков в совместной трехмерной окружающей среде в реальном времени. ICLE интегрирует самую последнюю технологию наушников с трехмерной средой, разработанную специально для обучения иностранным языкам в различных уровнях. ICLE использует Multimedia компьютеры, подключенные к локальной сети или к ISDN. Программная спецификация Обучение ...
... сопротивлении Ар £ 550 Па. Конструкция бункерного фильтра ФРИД-15 для газовых потоков с входной запыленностью 500 г/м3 также обеспечивает выполнение требований промышленной экологии. Данные технические решения внедрены на ряде промышленных предприятий. На р и с. 7 показан общий вид фильтра серии ФРИ. Модульное исполнение устройства обеспечивает его применимость как в технологических линиях, ...
... , в любом порядке, и выбрать из них необходимые позже, во время монтажа, когда отобранные кадры перезаписываются на новую мастер-ленту. Тип монтажа зависит от имеющегося технического оборудования, например, сегодня Россия переходит на современные передовые технологии в области монтажа, компьютерной графики и видеосъемки. Продакшн студии, видеостудии, саундстуди работают на PC фирмы Apple IMC и ...
0 комментариев