Содержание
Введение
1. Представление информации в ЭВМ
1.1 Непрерывная и дискретная информация
1.2 Кодирование информации
1.3. Представление информации в двоичном коде
Заключение
Список использованной литературы
Введение
Теоретической основой информатики является группа фундаментальных наук таких как: теория информации, теория алгоритмов, математическая логика, теория формальных языков и грамматик, комбинаторный анализ и т.д. Кроме них информатика включает такие разделы, как архитектура ЭВМ, операционные системы, теория баз данных, технология программирования и многие другие. Важным в определении информатики как науки является то, что с одной стороны, она занимается изучением устройств и принципов действия средств вычислительной техники, а с другой – систематизацией приемов и методов работы с программами, управляющими этой техникой.
Информационная технология – это совокупность конкретных технических и программных средств, с помощью которых выполняются разнообразные операции по обработке информации во всех сферах нашей жизни и деятельности. Иногда информационную технологию называют компьютерной технологией или прикладной информатикой.
Информация аналоговая и цифровая. Термин «информация» восходит к латинскому informatio,– разъяснение, изложение, осведомленность.
Информацию можно классифицировать разными способами, и разные науки это делают по-разному. Например, в философии различают информацию объективную и субъективную. Объективная информация отражает явления природы и человеческого общества. Субъективная информация создается людьми и отражает их взгляд на объективные явления.
В информатике отдельно рассматривается аналоговая информация и цифровая. Это важно, поскольку человек благодаря своим органам чувств, привык иметь дело с аналоговой информацией, а вычислительная техника, наоборот, в основном, работает с цифровой информацией.
1. Представление информации в ЭВМ
1.1 Непрерывная и дискретная информация
Человек воспринимает информацию с помощью органов чувств. Свет, звук, тепло – это энергетические сигналы, а вкус и запах – это результат воздействия химических соединений, в основе которого тоже энергетическая природа. Человек испытывает энергетические воздействия непрерывно и может никогда не встретиться с одной и той же их комбинацией дважды. Нет двух одинаковых зеленых листьев на одном дереве и двух абсолютно одинаковых звуков – это информация аналоговая. Если же разным цветам дать номера, а разным звукам – ноты, то аналоговую информацию можно превратить в цифровую.
Чтобы сообщение было передано от источника к получателю, необходима некоторая материальная субстанция – носитель информации. Сообщение, передаваемое с помощью носителя, назовем сигналом. В общем случае сигнал – это изменяющийся во времени физический процесс. Такой процесс может содержать различные характеристики (например, при передаче электрических сигналов могут изменяться напряжение и сила тока). Та из характеристик, которая используется для представления сообщений, называется параметром сигнала.
В случае когда параметр сигнала принимает последовательное во времени конечное число значений (при этом все они могут быть пронумерованы), сигнал называется дискретным, а сообщение, передаваемое с помощью таких сигналов -дискретным сообщением. Информация, передаваемая источником, в этом случае также называется дискретной. Если же источник вырабатывает непрерывное сообщение (соответственно параметр сигнала – непрерывная функция от времени), соответствующая информация называется непрерывной. Пример дискретного сообщения – процесс чтения книги, информация в которой представлена текстом, т.е. дискретной последовательностью отдельных значков (букв). Примером непрерывного сообщения служит человеческая речь, передаваемая модулированной звуковой волной; параметром сигнала в этом случае является давление, создаваемое этой волной в точке нахождения приемника – человеческого уха.
Непрерывное сообщение может быть представлено непрерывной функцией, заданной на некотором отрезке [а, Ь] (см. рис. 2). Непрерывное сообщение можно преобразовать в дискретное (такая процедура называется дискретизацией). Для этого из бесконечного множества значений этой функции (параметра сигнала) выбирается их определенное число, которое приближенно может характеризовать остальные значения. Один из способов такого выбора состоит в следующем. Область определения функции разбивается точками x1, x2,... хn, на отрезки равной длины и на каждом из этих отрезков значение функции принимается постоянным и равным, например, среднему значению на этом отрезке; полученная на этом этапе функция называется в математике ступенчатой. Следующий шаг – проецирование значений “ступенек” на ось значений функции (ось ординат). Полученная таким образом последовательность значений функции у1, у2, ... уn. является дискретным представлением непрерывной функции, точность которого можно неограниченно улучшать путем уменьшения длин отрезков разбиения области значений аргумента.
Рис. 1. Процедура дискретизации непрерывного сообщения
Ось значений функции можно разбить на отрезки с заданным шагом и отобразить каждый из выделенных отрезков из области определения функции в соответствующий отрезок из множества значений (рис. 2). В итоге получим конечное множество чисел, определяемых, например, по середине или одной из границ таких отрезков.
Таким образом, любое сообщение может быть представлено как дискретное, иначе говоря последовательностью знаков некоторого алфавита.
Возможность дискретизации непрерывного сигнала с любой желаемой точностью (для возрастания точности достаточно уменьшить шаг) принципиально важна с точки зрения информатики. Компьютер – цифровая машина, т.е. внутреннее представление информации в нем дискретно. Дискретизация входной информации (если она непрерывна) позволяет сделать ее пригодной для компьютерной обработки. Существуют и другие вычислительные машины – аналоговые ЭВМ. Они используются обычно для решения задач специального характера и широкой публике практически не известны. Эти ЭВМ в принципе не нуждаются в дискретизации входной информации, так как ее внутреннее представление у них непрерывно. В этом случае все наоборот – если внешняя информация дискретна, то ее “перед употреблением” необходимо преобразовать в непрерывную.
Единицы количества информации: вероятностный и объемный подходы
Определить понятие “количество информации” довольно сложно. В решении этой проблемы существуют два основных подхода. Исторически они возникли почти одновременно. В конце 40-х годов XX века один из основоположников кибернетики американский математик Клод Шеннон развил вероятностный подход к измерению количества информации, а работы по созданию ЭВМ привели к “объемному” подходу.
Вероятностный подход
Рассмотрим в качестве примера опыт, связанный с бросанием правильной игральной .кости, имеющей N граней (наиболее распространенным является случай шестигранной кости: N = 6). Результаты данного опыта могут быть следующие: выпадение грани с одним из следующих знаков: 1,2,... N.
Введем в рассмотрение численную величину, измеряющую неопределенность -энтропию (обозначим ее Н). Величины N и Н связаны между собой некоторой функциональной зависимостью:
H = f (N), (1.1)
а сама функция f является возрастающей, неотрицательной и определенной (в рассматриваемом нами примере) для N = 1, 2,... 6.
Рассмотрим процедуру бросания кости более подробно:
1) готовимся бросить кость; исход опыта неизвестен, т.е. имеется некоторая неопределенность; обозначим ее H1;
2) кость брошена; информация об исходе данного опыта получена; обозначим количество этой информации через I;
3) обозначим неопределенность данного опыта после его осуществления через H2. За количество информации, которое получено в ходе осуществления опыта, примем разность неопределенностей “до” и “после” опыта:
I = H1 – H2 (1.2)
Очевидно, что в случае, когда получен конкретный результат, имевшаяся неопределенность снята (Н2 = 0), и, таким образом, количество полученной информации совпадает с первоначальной энтропией. Иначе говоря, неопределенность, заключенная в опыте, совпадает с информацией об исходе этого опыта. Заметим, что значение Н2 могло быть и не равным нулю, например, в случае, когда в ходе опыта следующей выпала грань со значением, большим “З”.
Следующим важным моментом является определение вида функции f в формуле (1.1). Если варьировать число граней N и число бросаний кости (обозначим эту величину через М), общее число исходов (векторов длины М, состоящих из знаков 1,2,.... N) будет равно N в степени М:
X=NM. (1.3)
Так, в случае двух бросаний кости с шестью гранями имеем: Х=62=36. Фактически каждый исход Х есть некоторая пара (X1, X2), где X1 и X2 – соответственно исходы первого и второго бросаний (общее число таких пар – X).
Ситуацию с бросанием М раз кости можно рассматривать как некую сложную систему, состоящую из независимых друг от друга подсистем – “однократных бросаний кости”. Энтропия такой системы в М раз больше, чем энтропия одной системы (так называемый “принцип аддитивности энтропии”):
f(6M) = M ∙ f(6)
Данную формулу можно распространить и на случай любого N:
F(NM) = M ∙ f(N) (1.4)
Прологарифмируем левую и правую части формулы (1.3):
lnX=M ∙ lnN, М=lnX/1nM.
Подставляем полученное для M значение в формулу (1.4):
Обозначив через К положительную константу , получим: f(X) =К ∙ lnХ, или, с учетом (1.1), H=K ∙ ln N. Обычно принимают К = 1 / ln 2. Таким образом
H = log2 N. (1.5)
Это – формула Хартли.
Важным при введение какой-либо величины является вопрос о том, что принимать за единицу ее измерения. Очевидно, Н будет равно единице при N=2. Иначе говоря, в качестве единицы принимается количество информации, связанное с проведением опыта, состоящего в получении одного из двух равновероятных исходов (примером такого опыта может служить бросание монеты при котором возможны два исхода: “орел”, “решка”). Такая единица количества информации называется “бит”.
Все N исходов рассмотренного выше опыта являются равновероятными и поэтому можно считать, что на “долю” каждого исхода приходится одна N-я часть общей неопределенности опыта: (log2 N)1N. При этом вероятность i-го исхода Рi равняется, очевидно, 1/N.
Таким образом,
(1.6)
Та же формула (1.6) принимается за меру энтропии в случае, когда вероятности различных исходов опыта неравно вероятны (т.е. Рi могут быть различны). Формула (1.6) называется формулой Шеннона.
В качестве примера определим количество информации, связанное с появлением каждого символа в сообщениях, записанных на русском языке. Будем считать, что русский алфавит состоит из 33 букв и знака “пробел” для разделения слов. По формуле (1.5)
Н = log2
... умножать на основание новой системы счисления до тех пор, пока в новой дроби не будет нужного количества цифр, которое определяется требуемой точностью представления дроби. Правильная дробь в новой системе счисления записывается из целых частей произведений получающихся при последовательном умножении, причем первая целая часть будет старшей цифрой новой дроби. Рассмотрим в качестве примера ...
... техники (высокая тактовая частота) применение программных методов также достаточно эффективно и очень часто применяется в средствах вычислительной техники наряду с другими программными средствами защиты информации. Применение криптографических методов в рамках сетевых протоколов позволяет также решать отдельные задачи других направлений обеспечения безопасности. При этом, эти средства могут не ...
... и дробных разрядов. Так, например, сокращенной записи числа 737.25 соответствует его значение, вычисленное согласно равенству (1. 1): 737.25 =7 · 102 + 3 · 101 + 7 · 100 + 2 · 10-1 + 5 · 10-1. В двоичной системе счисления для представления чисел используются две цифры: 0 и 1. Действуя согласно с (1.1), значение двоичного числа, например, 11110010. 0110 можно представить в следующем виде: ...
... оно осуществляет свою деятельность, чем больше на предприятие осуществляется поставок, тем более стабильно работает данное предприятие. При осуществлении поставок на предприятие производится обработка и хранение большого количества информации, связанной с поставками, которая в себя включает: своевременное и правильное оформление документов и контроль за каждой операцией поступления товаров от ...
0 комментариев