1.3 Метод исключения Гаусса для решения СЛАУ
Суть всех методов исключения состоит в приведении исходной системы уравнений к системе более простого вида, для которой легко найти решение. К этим методам можно отнести метод исключения Гаусса, который имеет много вычислительных схем и, как показали исследования, является идеальным алгоритмом для решения СЛАУ.
Рассмотрим сначала самую простую схему – схему единственного деления. Применение схемы единственного деления продемонстрируем на примере СЛАУ 4- го порядка
Разделив первое уравнение системы на , получим
Из второго уравнения системы вычтем первое, умноженное на коэффициент при , то есть на . В результате получаем:
=
Поступая таким же образом с третьим и последующими уравнениями системы, получим
;
;
.
К выделенной системе применим тот же алгоритм, что и к исходной. В результате получаем
Прямой ход метода Гаусса закончен. Из полученной треугольной системы линейных алгебраических уравнений обратным ходом Гаусса отыскиваем вектор решения по следующим формулам
, , .
1.4 Вывод формулы пересчета БройденаВ процессе построения методов Ньютона и секущих решения нелинейного скалярного уравнения
функция f(x) в окрестности текущей точки подменяется линейной функцией (аффинной моделью)
. Приравнивание к нулю последней, т.е. решение линейного уравнения , порождает итерационную формулу для вычисления приближений к корню уравнения.
Если потребовать, чтобы заменяющая функцию f(x) вблизи точки аффинная модель имела в этой точке одинаковую с ней производную, то, дифференцируя, получаем значение коэффициента , подстановка которого в приводит к известному методу Ньютона. Если же исходить из того, что наряду с равенством должно иметь место совпадение функций f(x) и в предшествующей точке т.е. из равенства , , получаем коэффициент , превращающий в известную формулу секущих.
Равенство , переписанное в виде , называют соотношением секущих в Оно легко обобщается на n -мерный случай и лежит в основе вывода метода Бройдена. Опишем этот вывод.
В n-мерном векторном пространстве соотношение секущих представляется равенством
,
где - известные n-мерные векторы, - данное нелинейное отображение, а - некоторая матрица линейного преобразования в . С обозначениями , соотношение секущих в обретает более короткую запись . Аналогично одномерному случаю, а именно, по аналогии с формулой , будем искать приближения к решению векторного уравнения по формуле . Обратимую n x n-матрицу в ней нужно подобрать так, чтобы она удовлетворяла соотношению секущих . Но это соотношение не определяет однозначно матрицу : глядя на равенство , легко понять, что при n>1 существует множество матриц , преобразующих заданный n-мерный вектор в другой заданный вектор (отсюда - ясность в понимании того, что могут быть различные обобщения одномерного метода секущих).
При формировании матрицы будем рассуждать следующим образом. Переходя от имеющейся в точке аффинной модели функции F(x) к такой же модели в точке мы не имеем о матрице линейного преобразования никаких сведений, кроме соотношения секущих . Поэтому исходим из того, что при этом переходе изменения в модели должны быть минимальными. Эти изменения характеризует разность . Вычтем из равенства определяющее равенство и преобразуем результат, привлекая соотношение секущих . Имеем:
Представим вектор в виде линейной комбинации фиксированного вектора определенного в , и некоторого вектора t, ему ортогонального: ,
Подстановкой этого представления вектора в разность получаем другой ее вид
Анализируя выражение , замечаем, что первое слагаемое в нем не может быть изменено, поскольку - фиксированный вектор при фиксированном k. Поэтому минимальному изменению аффинной модели будет отвечать случай, когда второе слагаемое в будет нуль-вектором при всяких векторах t, ортогональных векторам , т.е. следует находить из условия
Непосредственной проверкой убеждаемся, что условие будет выполнено, если матричную поправку взять в виде одноранговой nхn-матрицы .
Таким образом, приходим к так называемой формуле пересчета С. Бройдена
... - функции f. Дальше, имеем: . Отсюда , где W'(x) - транспонированная матрица Якоби. Поэтому окончательно , причем . 3. Программная реализация итерационных методов Реализация алгоритмов итерационных методов решения систем нелинейных уравнений будет показана на примере системы: 3.1 Метод простых итераций Приведём систему к виду: Проверим условие ...
... В состав системы включены следующие интерфейсные программы: COSMOS/M DESIGNER. Автономная интерфейсная программа для системы AutoCAD. Она позволяет вызывать на выполнение вычислительные модули программы COSMOS/M прямо из среды AutoCAD через дополнительное меню. (AutoCAD продукция Autodesk, Inc.) COSMOS/M ENGINEER. Автономная интерфейсная программа для системы Рго/ENGINEER на рабочих станциях ...
... сети, позволяющая реализовать автоматическое изменение числа нейронов в зависимости от потребностей задачи, позволяет не только исследовать, но и контролировать процесс воспитания психологической интуиции искусственных нейронных сетей. - Впервые применена выборочная константа Липшица для оценки необходимой для решения конкретной задачи структуры нейронной сети. Практическая значимость ...
0 комментариев