Сигнал - физический процесс, отображающий сообщение. В технических системах чаще всего используются электрические сигналы. Сигналы, как правило, являются функциями времени.
1. Классификация сигналов
Сигналы можно классифицировать по различным признакам:
1. Непрерывные (аналоговые) - сигналы, которые описываются непрерывными функциями времени, т.е. принимают непрерывное множество значений на интервале определения. Дискретные - описываются дискретными функциями времени т.е. принимают конечное множество значений на интервале определения.
Детерминированные - сигналы, которые описываются детерминированными функциями времени, т.е. значения которых определены в любой момент времени. Случайные - описываются случайными функциями времени, т.е. значения которых в любой момент времени является случайной величиной. Случайные процессы (СП) можно классифицировать на стационарные, нестационарные, эргодические и неэргодические, а так же, гауссовы, марковские и т.д.
3. Периодические - сигналы, значения которых повторяются через интервал, равный периоду
х (t) = х (t+nT), где n = 1,2,...,¥; T - период.
4. Kаузальные - сигналы, имеющие начало во времени.
5. Финитные - сигналы конечной длительности и равные нулю вне интервала определения.
6. Когерентные - сигналы, совпадающие во всех точках определения.
7. Ортогональные - сигналы противоположные когерентным.
2. Характеристики сигналов1. Длительность сигнала (время передачи) Тс - интервал времени, в течении которого существует сигнал.
2. Ширина спектра Fc - диапазон частот, в пределах которых сосредоточена основная мощность сигнала.
3. База сигнала - произведение ширины спектра сигнала на его длительность.
4. Динамический диапазон Dc - логарифм отношения максимальной мощности сигнала - Pmax к минимальной - Pmin (минимально-различи-мая на уровне помех):
Dc = log (Pmax/Pmin).
В выражениях, где может быть использованы логарифмы с любым основанием, основание логарифма не указывается.
Как правило, основание логарифма определяет единицу измерения (например: десятичный - [Бел], натуральный - [Непер]).
5. Объем сигнала определяется соотношением Vc = TcFcDc.
6. Энергетические характеристики: мгновенная мощность - P (t); средняя мощность - Pср и энергия - E. Эти характеристики определяются соотношениями:
P (t) = x2 (t); ; (1)
где T = tmax-tmin.
3. Математические модели случайных сигнловДетерминированное, т.е. заранее известное сообщение, не содержит информации, т.к получателю заранее известно, каким будет переда-ваемый сигнал. Поэтому сигналы носят статистический характер [11].
Случайный (стохастический, вероятностный) процесс - процесс, который описывается случайными функциями времени.
Случайный процесс Х (t) может быть представлен ансамблем неслучайных функций времени xi (t), называемых реализациями или выборками (см. рис.1).
Рис.1. Реализации случайного процесса X (t)
Полной статистической характеристикой случайного процесса является n - мерная функция распределения: Fn (x1, x2,..., xn; t1, t2,..., tn), или плотность вероятности fn (x1, x2,..., xn; t1, t2,..., tn).
Использование многомерных законов связанно с определенными трудностями,поэтому часто ограничиваются использованием одномерных законов f1 (x, t), характеризующих статистические характеристики случайного процесса в отдельные моменты времени, называемые сечениями случайного процесса или двумерных f2 (x1, x2; t1, t2), характеризующих не только статистические характеристики отдельных сечений, но и их статистическую взаимосвязь.
Законы распределения являются исчерпывающими характеристиками случайного процесса, но случайные процессы могут быть достаточно полно охарактеризованы и с помощью, так называемых, числовых характеристик (начальных, центральных и смешанных моментов). При этом наиболее часто используются следующие характеристики: математическое ожидание (начальный момент первого порядка)
; (2)
средний квадрат (начальный момент второго порядка)
; (3)
дисперсия (центральный момент второго порядка)
; (4)
корреляционная функция, которая равна корреляционному моменту соответствующих сечений случайного процесса
. (5)
При этом справедливо следующее соотношение:
(6)
Стационарные процессы - процессы, в которых числовые характеристики не зависят от времени.
Эргодические процессы - процесс, в которых результаты усреднения и по множеству совпадают.
Гауссовы процессы - процессы с нормальным законом распределения:
(7)
Этот закон играет исключительно важную роль в теории передачи сигналов, т.к большинство помех являются нормальными.
В соответствии с центральной предельной теоремой большинство случайных процессов являются гауссовыми.
Марковский процесс - случайный процесс, у которых вероятность каждого последующего значения определяется только одним предыдущим значением.
4. Формы аналитического описания сигналов
Сигналы могут быть представлены во временной, операторной или частотной области, связь между которыми определяется с помощью преобразований Фурье и Лапласа (см. рис.2).
Преобразование Лапласа:
L: L-1: (8)
Преобразования Фурье:
F: F-1: (9)
L:
L-1:
F-1 : p=jw
F: jw=p
Рис.2 Области представления сигналов
При этом могут быть использованы различные формы представления сигналов с виде функций, векторов, матриц, геометрическое и т.д.
При описании случайных процессов во временной области используется, так называемая, корреляционная теория случайных процессов, а при описании в частотной области - спектральная теория случайных процессов.
С учетом четности функций и и в соответствии с формулами Эйлера:
(10)
можно записать выражения для корреляционной функции Rx (t) и энергетического спектра (спектральной плотности) случайного процесса Sx (w), которые связанны преобразованием Фурье или формулами Винера - Хинчина
; (11)
. (12)
5. Геометрическое представление сигналов и их характеристикЛюбые n - чисел можно представить в виде точки (вектора) в n -мерном пространстве, удаленной от начала координат на расстоянии D,
где . (13)
Сигнал длительностью Tс и шириной спектра Fс, в соответствии с теоремой Котельникова определяется N отсчетами, где N = 2Fc Tc.
Этот сигнал может быть представлен точкой в n - мерном пространстве или вектором, соединяющим эту точку с началом координат [5].
Длина этого вектора (норма) равна:
; (14)
где xi =x (nDt) - значение сигнала в момент времени t = n. Dt.
Допустим: X - передаваемое сообщение, а Y - принимаемое. При этом они могут быть представлены векторами (рис.3).
X2 ,Y2
x2 X
d
y2 Y
g
X1 , Y1
0 a1 a2 x1 y1
Рис.3. Геометрическое представление сигналов
Определим связи между геометрическим и физическим представлением сигналов. Для угла между векторами X и Y можно записать
cosg = cos (a1-a2) = cosa1 cosa2 + sina1 sina2 =
= (15)
Для N - отсчетов:
cosg (16)
Найдем модуль формального вектора. Для этого рассмотрим кванто-ванный сигнал (рис. 4).
Рис. 4. График сигнала
Рис.4. График сигнала
Средняя мощность сигнала
.
Энергия сигнала
.
Энергия кванта
.
Энергию квантованного сигнала можно определить по формуле
.
При этом модуль сигнала равен
.
Взаимная корреляционная функция равна
.
При этом
.
Это нормированная корреляционная функция
Если g = 90о, то rxy (t) = 0 - сигналы ортогональны, т.е. независимы;
Если g = 0, то rxy (t) = 1 - передаваемый сигнал равен принятому;
Вектор d - характеризует (помеху) ошибку. Определим дисперсию ошибки:
По вектору ошибки определяют, допустима ли ее величина.
Список литературы
1. Hayes, M. H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons, 1996.
2. Баскаков С.И. Радиотехнические цепи и сигналы: Учеб. для вузов по спец. "Радиотехника". - М.: Высш. шк., 2000.
3. Голд Б., Рэйдер Ч. Цифровая обработка сигналов / Пер. с англ., под ред.А.М. Трахтмана. - М., "Сов. радио", 1973, 368 с.
4. Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. - Харьков: ХПУ, 2000.
5. Карташев В.Г. Основы теории дискретных сигналов и цифровых фильтров. - М.: Высш. шк., 1982.
6. Колесник В.Д., Полтырев Г.Ш. Курс теории информации. -М.: Наука, 1982.
7. Куприянов М.С., Матюшкин Б.Д. - Цифровая обработка сигналов: процессоры, алгоритмы, средства проектирования. - СПб.: Политехника, 1999.
8. Марпл С.Л. Цифровой спектральный анализ. М.: Мир, 1990.
9. Рудаков П. И, Сафонов В.И. Обработка сигналов и изображений Matlab 5. x. Диалог-МИФИ. 2000.
10. Сергиенко А.Б. Цифровая обработка сигналов. - СПб.: Питер, 2002.
Похожие работы
... построения оптических систем и сетей связи В результате изучения данной дисциплины студент должен: знать: принципы построения инфокоммуникационных сетей (ПК-1); основные характеристики первичных сигналов связи (ПК-3); принципы построения проводных и радиосистем передачи с частотным и временным разделением каналов (ПК-1); основные характеристики каналов и трактов (ПК-3); принципы построения ...
... комплементарных транзисторах (а) и зависимость его сопротивления в открытом состоянии от входного напряжения (б). Вследствие неидеальности, они вносят погрешности в обрабатываемые сигналы. Источниками погрешностей электронных аналоговых коммутаторов являются: · ненулевое проходное сопротивление электронного ключа во включенном состоянии и конечная его величина в выключенном; · остаточное ...
... Структурная схема видеомагнитофона Укрупненная структурная схема видеомагнитофона представлена на рис. 2. Рисунок 2 - Структурная схема видеомагнитофона: 1 – радиоприёмное устройство, 2 – канал записи сигнала яркости, 3 – канал записи сигналов цветности; 4,9 – сумматоры; 5,12 – коммутаторы; 6 – предварительный усилитель воспризводимого сигнала; 7 – канал воспроизведения сигнала яркости; 8 ...
... в алгоблоки; конфигурирование; установку параметров настройки; установку начальных условий; запись информации в программируемое постоянное запоминающее устройство. Сведения о процедурах технологического программирования представлены в таблице. Табл.4.1. Процедура код Выполняемые операции тестирование 00 Комплексный тест ПЗУ и ОЗУ 01-04 Тестирование микросхем ПЗУ 05-08 ...
0 комментариев