КОНТРОЛЬНАЯ РАБОТА ПО ТЕМЕ:

Особенности записи сигналов изображения


Введение

Физические процессы, протекающие при магнитной записи сигналов изображения (видеосигналов), такие же, как при записи звуковых сигналов. Однако, отличие характеристик этих сигналов вынуждает изменять технические решения при конструировании видеомагнитофонов.


1. Особенности видеосигналов и трудности, возникающие при их записи

Сигналы изображения в принятой у нас системе «SECAM» занимают полосу частот от 50 Гц до 6.5 МГц, т.е. частотный интервал ~ 17 октав. Звуковые сигналы занимают полосу частот 20 Гц – 20 кГц или ~ 10 октав.

Таким образом, частотный интервал видеосигнала превышает частотный интервал звукового сигнала на 7 октав. Это и создаёт основные трудности при магнитной записи.

Верхней частоте спектра видеосигнала 6.5 МГц должна соответствовать минимальная длина волны записи. Разрешающая способность магнитного носителя позволяет записать сигнал с длиной волны мкм.

Зная частоту и длину волны, определим необходимую скорость движения магнитного носителя м/с. Это – огромная скорость. Так, для записи фильма длительностью в 1 час понадобится ~ 70 км магнитной ленты.

Лента толщиной 40 мкм, намотаная на сердечник диаметром 10 см, при такой длине образует рулон диаметром 1.9 м, масса которого ~ 50 кг. Работать с таким рулоном невозможно.

Поэтому продольную запись на магнитную ленту применять в видеомагнитофонах нельзя.

Частотный интервал шириной в 17 октав не сможет записать ни одна магнитная головка. Возникает проблема, как уменьшить относительную ширину спектра записываемого сигнала?

Первая задача – сокращение расхода ленты, была решена в 1956 г. сотрудниками фирмы АМРЕХ Ч. Гинсбургом и Ч. Андерсеном (фирма основана в начале 40-х г.г. русским изобретателем А.М.Понятовым). Они обеспечили высокую скорость «головка – лента» при медленном движении ленты путем поперечной записи на широкую (2”) ленту головками, установленными на вращающемся барабане.

Согласование полосы частот видеосигнала с полосой пропускания магнитных головок было достигнуто переносом спектра видеосигнала на более высокие частоты, используя частотную модуляцию с малым индексом. Однако, заправка ленты в магнитофон оказалась слишком сложной. Поэтому эксплуатировать такой магнитофон могли только профессионалы.

Следующим важным шагом в развитии техники видеозаписи было появление в 1961 году наклонно-строчной записи. Но и такие магнитофоны не стали популярными из-за сложности зарядки. В 1971 г. фирма Sony выпустила первые кассетные видеомагнитофоны, что существенно упростило зарядку ленты в магнитофон.

В это время появилось несколько форматов наклонно-строчной записи. Но, со временем, победу в конкурентной борьбе одержал формат VHS, предложенный в 1976 г. инженером фирмы JVC Шизуо Такано. Видеомагнитофон становится не только профессиональным, но и бытовым прибором.

В нашей стране первым бытовым видеомагнитофоном формата VHS был «Электроника ВМ-12», выпущенный в 1983 г.

2. Наклонно-строчная запись

 

При наклонно-строчной записи ось барабана с головками не прерпендикулярна направлению движения ленты. Поэтому дорожки записи расположены под некоторым углом θ к направлению движения ленты (см. рис. 1).



Рисунок 1

Получим основные соотношения, характеризующие наклонно-строчной формат записи.

Если длительность одного поля (т.е.полукадра) – Т, то длина строки , где - скорость головки относительно ленты, - верхняя частота спектра сигнала, - минимально допустимая длина волны записи. Если поле разбито на S сегментов, то .

Определим необходимое число оборотов барабана с головками. Если головка одна и один сегмент, то число оборотов . Если головок , то . Наконец, если сегментов S, то  об/с.

Определим необходимый диаметр барабана D. Скорость головки относительно ленты . Откуда .

Теперь можем найти необходимую скорость движения ленты Vл. Из рис. 1 следует, что:

 или .

Откуда:


.

Для получения устойчивой синхронизации строк необходимо, чтобы строчные синхроимпульсы располагались на одном перпендикуляре к направлению дорожки записи (условие строчной корреляции). Это налагает дополнительное требование на отношение скоростей:

.


Информация о работе «Особенности записи сигналов изображения»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 9598
Количество таблиц: 1
Количество изображений: 6

Похожие работы

Скачать
133819
3
0

... учесть введением в блок-схему дополнительного .источника шума [11]. Расстояние между отсчетами должно удовлетворять теореме Найквиста для двумерных колебаний [1]. Устройства для дискретизации и квантования изображений основаны на технике микроденситометрии. В подобных системах на пленку проектируется луч света с интенсивностью I1. Интенсивность I2 света, прошедшего сквозь пленку (или отраженного ...

Скачать
40971
3
3

... высокую точность и временную стабильность испытательного сигнала. Элементную базу таких ГИС составляют цифровые микросхемы. 1           Постановка задачи Спроектировать генератор испытательных сигналов. Устройство должно обеспечивать: 1.         Формирование белого и черного полей. 2.         Формирование шести или двенадцати вертикальных полос с градацией яркости. 3.         ...

Скачать
33353
0
0

... информационная насыщенность; -           рационализация преподнесения учебной информации; -           показ изучаемых явлений в развитии, динамике; -           реальность отображения действительности. Использование аудиовизуальных средств обучения способствует реализации следующих дидактических принципов: принцип целенаправленности; принцип связи с жизнью; принцип наглядности; положительный ...

Скачать
13203
0
5

... шаг дискретизации реальных сообщений Х(t) делают несколько меньшим, а частоту дискретизации, соответственно, – несколько большей (по крайней мере, на 30 - 50%), нежели предписывает теорема Котельникова.   Дискретизация двумерных сигналов (изображений) Все большую часть передаваемых с использованием РТС ПИ сообщений, особенно в последнее время, составляют сигналы, являющиеся функциями не ...

0 комментариев


Наверх