МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ
Бердичівський політехнічний коледж
Контрольна робота
«Комп’ютерна схемотехніка»
(варіант №21)
студента групи Пзс-503
Михайлуса Михайла Геннадійовича
2008 р.
1. Принципи побудови систем числення, основні поняття
У числової інформації в персональних комп’ютерах є такі характеристики:
1. система числення - двійкова, десяткова та інші;
2. вид числа - дійсні, комплексні та масиви;
3. тип числа - змішані, цілі та дробові;
4. форма представлення числа (місце розташування коми) - з природною (змінною), з фіксованою та з плаваючою комами;
5. розрядна сітка та формат числа;
6. діапазон і точність подання числа;
7. спосіб кодування від’ємних чисел - прямий, обернений чи доповняльний код;
8. алгоритм виконання арифметичних операцій.
Системи числення — це сукупність прийомів та правил запису чисел за допомогою цифр чи інших символів. Запис числа у деякій системі числення називається його кодом.
Усі системи числення поділяють на позиційні та непозиційні.
Непозиційна система числення має необмежену кількість символів. Кількісний еквівалент кожного символу постійний і не залежить від позиції. Найвідомішою непозиційною системою числення є римська. В якій використовується сім знаків: I -1, V - 5, X - 10, L - 50, C - 100, D - 500, M - 1000. Недоліки непозиційної системи числення: відсутність нуля, складність виконання арифметичних операцій. Хоча римськими числами часто користуються при нумерації розділів у книгах, віків в історії та інше.
Позиційна система числення має обмежену кількість символів і значення кожного символу чітко залежить від її позиції у числі. Кількість таких символів q, називають основою позиційної системи числення. Головна перевага позиційної системи числення - це зручність виконання арифметичних операцій.
У системах числення з основою меншою 10 використовують десяткові цифри, а для основи більшої 10 добавляють букви латинського алфавіту.
У позиційних системах числення значення кожного символу (цифри чи букви) визначається її зображенням і позицією у числі.
Окремі позиції в записі числа. називають розрядами, а номер позиції - номером розряду. Число розрядів у записі числа, називається його розрядністю і зберігається з довжиною числа.
Позиційні системи числення діляться на однорідні та неоднорідні.
Неоднорідні системи числення - це такі позиційні системи числення, де для кожного розряду числа основа системи числення не залежить одна від одної і може мати будь-яке значення.
Прикладом є двійково-п’ятиркова система числення (система зі змішаними основами). Вони використовуються у спеціалізованих ЕОМ ранніх поколінь.
Однорідна позиційна система числення - це така система числення, для якої множина допустимих символів для всіх розрядів однакова. Причому, якщо вага в розряді числа складає ряд геометричної прогресії з знаменником (основою р), то це однорідна позиційна система числення з природною порядковою вагою. У даній позиційній системі числення з природною порядковою вагою число може бути представлене у вигляді поліному:
де - основа системи числення;
- вага позиції;
- цифри в позиціях числа;
- номер розрядів цілої частини;
- номер розрядів дробової частини.
Система числення з основою 10 - десяткова система. Для її зображення використовують цифри: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Число десять є складеним. Кожне десяткове число можна розкласти по ступенях основи десяткової системи числення. Наприклад, число 5213,6 можна представити як поліном, кожен член якого є добутком коефіцієнта на основу системи числення в деякій степені:
5213,6=5·103+2·102+1·101+3·100+6·10-1
Система числення з основою 2 - двійкова система. Для її зображення використовують цифри: 0, 1. Кожне двійкове число можна розкласти по ступенях основи двійкової системи числення. Наприклад, число 111,01 можна представити як поліном, кожен член якого є добутком коефіцієнта на основу системи числення в деякій степені:
111,012=1·22+1·21+1·20+0·2-1+1·2-2=7,2510
Система числення з основою 8 - вісімкова система. Для її зображення використовують цифри: 0, 1, 2, 3, 4, 5, 6, 7. Кожне вісімкове число можна розкласти по ступенях основи вісімкової системи числення. Наприклад, число 45,21 можна представити як поліном, кожен член якого є добутком коефіцієнта на основу системи числення в деякій степені:
45,218=4·81+5·80+2·8-1+1·8-21=37,265110
Система числення з основою 16 - шістнадцяткова система. Для її зображення використовують цифри: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 та літери: A, B, C, D, E, F. Кожне шістнадцяткове число можна розкласти по ступенях основи шістнадцяткової системи числення. Наприклад, число DE,1B можна представити як поліном, кожен член якого є добутком коефіцієнта на основу системи числення в деякій степені:
DE,1B16=D·161·+E·160+1·16-1·B·16-2=222,105110
Ці записи показують один із способів переведення не десяткових чисел у десяткові.
При однаковій розрядності у системах числення з більшою основою можна записати більше різних чисел.
Перевагою двійкової системи числення є: простота виконання арифметичних операцій, наявність надійних мікроелектронних схем з двома стійкими станами (тригерами), призначеними для зберігання значень двійкового розряду цифр 0 або 1.
Для переведення цілого числа з однієї системи в іншу необхідно поділити перевідне число на нову основу за правилом початкової системи. Одержана перша остача є значенням молодшого розряду в новій системі, п першу частку необхідно знову ділити. Цей процес продовжується аж до появи неподільної частки. Результат записують у порядку оберненому їхньому одержанню:
Наприклад: переведемо число 118 з десяткової системи у війкову
11810=11101102
118 | 2 | |||||||||||
118 | 59 | 2 | ||||||||||
0 | 58 | 29 | 2 | |||||||||
1 | 28 | 14 | 2 | |||||||||
1 | 14 | 7 | 2 | |||||||||
0 | 6 | 3 | 2 | |||||||||
1 | 2 | 1 | 2 | |||||||||
1 | 0 | 0 | ||||||||||
1 |
Для переведення правильного дробу з однієї системи числення в іншу необхідно діючи за правилами початкової системи помножити перевідне число на основу нової системи. Від результату відокремити цілу частину, а дробову частину, яка залишилася знов помножити на цю основу.
Процес такого множення повторюється до одержання заданої кількості цифр. Результат записують як цілі частин добутку у порядку їхнього одержання.
Наприклад: переведемо число 0,625 з десяткової системи у двійкову
0,62510=0,10102
0,625 | |
2 | |
| 1,250 |
2 | |
| 0,500 |
2 | |
| 1,000 |
2 | |
| 0,000 |
Для переведення змішаних чисел у двікову систему потрібно окремо переводити цілу та дробову частини.
У вісімкових і шістнадцятькових чисел основа кратна степеню 2, тому переведення цих чисел у двійкову реалізується наступним чином: кожну цифру записують трьома двійковими цифрами (тріадами) для вісімкових чисел і чотирма - для шістнадцяткових чисел в напрямках вліво та вправо від коми. При цьому крайні незначущі нулі опускаються.
3 0 5, 4 2
Наприклад: 305,428=11 000 101,100 012
7 2 А, E F
72А,EF16=111 0010 1010,1110 11112
Для переведення двійкового числа у вісімкове початкове число розбивають на тріади вліво та вправо від коми, відсутні крайні цифри доповнюють нулями, кожну тріаду записують вісімковою цифрою. Аналогічно здійснюється переведення двійкового числа у шістнадцяткове, при цьому виділяють, які заміняють шістнадцятковими цифрами.
6 3, 4 2
Наприклад:
110 011,100 0102=63,42
3 А С 7
0011 1010,1100 01112=3А,С716
Критерії вибору
На відміну від аналогових машин, де будь-яка фізична чи математична величина може бути представлена у виді напруги, переміщення і т. п., у цифрових обчислювальних машинах дані задаються у виді цифрових чи буквених символів. При цьому використовується не будь-який набір символів, а визначена система. В електронних обчислювальних машин застосовуються позиційні системи числення. Така система числення, як римська, непозиційна, в обчислювальній техніці не використовується через свою громіздкість і складні правила утворення.
Від вибору системи числення залежить швидкодія ЕОМ та об’єм пам’яті. При виборі враховують такі нюанси:
1) наявність фізичних елементів;
2) економічність системи числення (чим більша основа системи числення, тим потрібна менша кількість розрядів, але більша кількість відображуючих елементів). Найбільш ефективна це трійкова система числення, але двійкова система і системи числення з основою 4 - не гірша;
3) важкість виконання операцій (чим менше цифр, тим простіше);
4) швидкодія (чим більше цифр, тим менша швидкодія);
5) наявність формального математичного апарату для аналізу і синтезу обчислювальних пристроїв.
Класична двійкова система числення - це така система числення, в якій для зображення чисел використовують тільки два символи: 0 та 1, а вага розрядів змінюється по закону 2k, де к—довільне число.
Правило виконання операцій у класичній двійковій системі числення
У загальному вигляді двійкові числа можна представити у вигляді поліному:
А2 = r n*2n + r n-1* 2n-1 + … + r1* 21 + r0*20 + r-1* 2-1,
Додавання у двійковій системі числення проводиться по правилу додавання поліномів, тобто j-тий розряд суми чисел a та b визначається за формулою.
Двійкова арифметика, чи дії над двіковими числами, використовують наступні правила, задані таблицями додавання, віднімання, множення.
Додавання Віднімання Множення
0 + 0 = 0 0 – 0 = 0 0 * 0 = 0
0 + 1 = 1 1 – 0 = 1 0 * 1 = 0
1 + 0 = 1 1 – 1 = 0 1 * 0 = 0
1 + 1 = 10 10 – 1 = 1 1 * 1 = 1
Логічне додавання
0 | 1 | |
0 | 0 | 1 |
1 | 1 | 1 |
Додавання по модулю 2
| 0 | 1 |
0 | 0 | 1 |
1 | 1 | 0 |
Додавання двох багаторозрядних двійкових чисел проводиться порозрядно з урахуванням одиниць переповнення від попередніх розрядів.
Приклад:
+ | 1011 |
1011 | |
10110 |
Віднімання багаторозрядних двійкових чисел, аналогічно додаванню, починається з молодших розрядів. Якщо зайняти одиницю в старшому розряді, утвориться дві одиниці в молодшому розряді.
Приклад.
- | 1010 |
0110 | |
0100 |
Множення являє собою багаторазове додавання проміжних сум і зсувів.
Приклад.
x | 10011 |
101 | |
+ | 10011 |
00000 | |
10011 | |
1011111 |
Перевірка за вагами розрядів числа 1011111(2) дає 64 + 16 + 8 + 4 + 2 + 1 = 95(10).
Процес ділення складається з операцій віднімання, що повторюють.
Приклад.
101010 | 111 | |||
111 | 110 | |||
0111 | ||||
111 | ||||
0000 | ||||
Позиційні системи числення з непостійною штучною вагою
Для ЦОМ розроблені допоміжні системи числення, що одержали назву "двійково-кодовані десяткові системи" (ДКДС). У цій системі кожна десяткова цифра представляється двійковим еквівалентом. Чотирьохрозрядне двійкове число може мати ваги розрядів: 2, 4, 2, 1 чи 8, 4, 2, 1, і ін. Десяткове число 7 у залежності від прийнятої системи ваги війкового розряду буде зображено у виді:
А) 1101 і Б) 0111
2421 8421(2-10)
Недоліком ДКДС є використання зайвих двійкових розрядів для десяткових чисел від 0 до 7. Більш раціональне застосування вісімкової системи, але вісімкові числа доводиться переводити в десяткові, а числа в ДКДС відразу читаються в десятковому коді.
Такі системи числення найчастіше використовуються в спеціалізованих ЕОМ як коди. Прикладом є двійково-десяткова системи числення.
Щоб перекласти десяткове число у двйково-десяткову систему числення, необхідно кожну цифру десяткового числа замінити.
Щоб перекласти число з двійково-десяткової системи числення необхідно спочатку перекласти його у десяткову систему числення, а потім за загальним правилом в іншу систему числення.
Щоб перекласти двійково-десяткове число у десяткову систему числення, необхідно кожні чотири цифри двійкової системи числення замінити однією цифрою десяткової системи числення, для цілої частини, починаючи з молодшого розряду, для дробової - з старшого.
Таблиця кодів
(10) | 8-4-2-12 | 8-4-2-1 (спеціалізована) | 8-4-2-1+”3” | 8-4-2-1+”6” | Грея |
0 | 0000 | 0000 | 0011 | 0110 | 0000 |
1 | 0001 | 0001 | 0100 | 0111 | 0001 |
2 | 0010 | 0010 | 0110 | 1000 | 0011 |
3 | 0011 | 0011 | 0111 | 1001 | 0010 |
4 | 0100 | 0100 | 1000 | 1010 | 0110 |
5 | 0101 | 1011 | 1001 | 1011 | 0111 |
6 | 0110 | 1100 | 1001 | 1100 | 0101 |
7 | 0111 | 1101 | 1010 | 1101 | 0100 |
8 | 1000 | 1110 | 1011 | 1110 | 1100 |
9 | 1001 | 1111 | 1100 | 1111 | 1101 |
... в іншу (найчастіше для переведення із двійкової, вісімкової та шістнадцяткової систем числення у десяткову, і навпаки). 6. Програмна реалізація Програма розроблена для перетворення чисел з однієї системи числення в іншу.Реалізована в середовищі програмування Borland C++Builder. Лістінг програми: #include <vcl.h> #pragma hdrstop #include "Unit1.h" #include <math.h> #include < ...
... файл Kurs2.exe і далі використовувати головне меню програми. Висновки Завершивши роботу над курсовим проектом можна зробити висновок про те, що мені вдалося досягти своєї мети і розробити програму переводу з однієї системи числення у іншу. За допомогою засобів алгоритмічної мови Turbo Pascal було створено програму Kurs2‚ яка дозволяє здійснювати перевід чисел з двійкової‚ вісімкової та ші ...
... ї довжини послідовності чи нулів одиниць, що приводить до необхідності одночасного аналізу декількох розрядів множника і зрушенню на довільне число розрядів. 3.3.3. Апаратні методи прискорення операції множення в двійковій системі числення Спочатку розглянемо апаратні методі прискорення операції множення першого порядку. 1. Метод множення з перетворенням цифр множнику групування розрядiв і ...
... мы будем определять аналитические зависимости изменения переменных состояния системы численными методами с использованием переходной матрицы, а также с помощью специальных функций MATHCAD. 2.2 Теоретическое обоснование применения преобразования Лапласа Классический метод решения системы дифференциальных уравнений высокого порядка связан с большими вычислительными затратами, особенно при ...
0 комментариев