3. Решение задач СТП

Детерминированный эквивалент задачи стохастического программирования в М-постановке включает ограничения, которые являются нееепарабельными функциями. Обозначим

3.1

тогда задачу стохастического программирования можно записать в сепарабельной форме:

3.2

где


Эта задача является сепарабельной задачей нелинейного программирования и может быть решена с помощью стандартных программных средств.

Функция F(x1, х2, хп) называется сепарабельной, если она может быть представлена в виде суммы функций, каждая из которых является функцией одной переменной, т. е. если  

Если целевая функция и функции в системе ограничений задачи нелинейного программирования сепарабелъные, то приближенное решение может быть найдено методом кусочно-линейной аппроксимации.

Пример 1. Рассмотрим задачу распределения двух видов ресурсов для выпуска двух наименований изделий.

Решение. Ее модель:

где a i j , bi , cj — случайные.

При М-постановке модель запишется:


где a1, a2 — заданные уровни вероятности соблюдения каждого ограничения.

Для того чтобы решить задачу в М-постановке, необходимо перейти к ее детерминированному эквиваленту:

Исходные данные, необходимые для решения этой задачи, сведены в таблицах 3.3 и 3.4.

Таблица 3.3

Величина С d D
X1 5 2 6
X2 8 3 9

Таблица 3.4

Ограничения Случайные величины
ai1 ai2 bi

1 10 2 15 3 100 9
2 20 6 14 4 150 12

Если задать уровни вероятности a1,2 = 0,6, для которых ta = 0,25, то получим после подстановки исходных данных детерминированный эквивалент:

Результаты решения этой задачи для детерминированного случая ζ i = 0 и при a i = 0,6 (табл. 3.5), где

Таблица 3.5

Величина ζ i = 0 a i = 0,6 Величина ζ i = 0 a i = 0,6
x1 2 2 ζ1 0 4,4
x2 5,3 5,04 ζ2 0 5,8
L 52,4 50,3 γ1 0 4,4
β 0 4 γ2 0 5,1

Таблица 3.6

Величина a1,2
0,5 0,6 0,77 0,89 0,96 0,987
x1 2 2 2 3,71 3,07 2,165
x2 5,3 5,04 4,51 3 3 3
L 52,4 50,3 46,1 42,6 39,3 34,8
β 0 4 12 18,7 25 33,6
γ1 0 4,4 12,3 17,9 24,3 33,3
γ2 0 5,1 14,8 16,5 23,2 26

Рассмотрим теперь, как повлияют на результат решения задачи величины, определяющие ее вероятностный характер. К таким величинам относят заданный уровень вероятности ai, и дисперсий σij2 и θi2. Начнем с анализа влияния ai (табл. 3.6).

Из анализа решения этой задачи можно сделать следующие выводы: для обеспечения гарантированного (с вероятностью a = 0,6) выполнения плана необходимо иметь дополнительно около 5% каждого вида ресурса. При отсутствии дополнительного ресурса целевой функции может уменьшиться на величину (β = 4% вследствие возможного сокращения выпуска продукции х2 от 5,3 до 5,04.

Этот пример подтверждает тот факт, что в реальных условиях для гарантированного выполнения плана необходимы дополнительные ресурсы в размере ζ i противном случае возможно уменьшение выпуска продукции.

При этом можно сделать выводы:

1)         в целях повышения заданного уровня вероятности выполнения плана ai требуется увеличить дополнительные ресурсы γi. Так, для выполнения плана с вероятностью, близкой к 1 (а = 0,987), необходим дополнительный ресурс в размере γi = 26, ..., 33% от величины используемого без учета вероятностных характеристик;

2)         отсутствие такого увеличения может привести к ухудшению целевой функции на величину β = 33,6%;

3)         возрастание a отражается на номенклатуре продукции. При этом в интервале a = 0,5, ..., 0,77 значение х1 сохраняется неизменным, а х2 — уменьшается. При дальнейшем увеличении а = 0,89, ..., 0,987 значение х2 = const, в то время как х1 сначала скачком растет, а затем постепенно уменьшается. Несмотря на то что при а = 0,89 значения x1,2 резко изменяются, целевая функция во всем интервале изменения а уменьшается плавно. Таково влияние заданного уровня вероятности соблюдения ограничений а на результат решения задачи.

Для большей реальности и выполнимости планов элементы модели должны постоянно уточняться по фактическим реализациям случайных величин.


Заключение

При написании курсовой работы по дисциплине «Математические методы» на тему « Стохастическое программирование » у меня возникали непонятности в теоритической части, так как каждый автор пишет по разному, но мне пришлось понимать и разбираться в каждой из книг.


Список литературы

1. « Математические методы в программировании » : / Агальцов В.П., Волдайская И.В. Учебник : – М . : ИД «ФОРУМ» : ИНФРА-М, 2006. – 224с. : ил. –(Профессиональное образование). – (Учимся программировать).

2. Лекции по дисциплине « Математические методы ».

3. «Математические методы: Учебник» / Партика Т.Л., Попов И.И. – М: ФОРУМ: ИНФРА, 2005.

4.Интернет сайт: http://ru.wikipedia.org/wiki/

5.«Математическое программирование» / Костевич Л., издательство «Новое знание», 2003.


Информация о работе «Стохастическое программирование»
Раздел: Информатика, программирование
Количество знаков с пробелами: 18950
Количество таблиц: 5
Количество изображений: 13

Похожие работы

Скачать
44486
4
4

... с помощью двухэтапного метода, совпадает с решением, полученным в среде MS Excel с помощью программной надстройки «Поиск решения». 7. ПРИМЕРЫ ПОСТАНОВОК, ФОРМАЛИЗАЦИИ И РЕШЕНИЯ ПЕРСПЕКТИВНЫХ ОПТИМИЗАЦИОННЫХ УПРАВЛЕНЧЕСКИХ ЗАДАЧ Одним из методов решения задач линейного программирования является графический метод, применяемый для решения тех задач, в которых имеются только две переменные, ...

Скачать
93027
12
0

... и общества. Поэтому сознательное поддержание равновесия между естественной и социальной системами, сохранение их целостности возможно только в том случае, если в системе социального управления будет по возможности полнее отражаться многообразие свойств человека, вытекающее из богатства его природы. При этом социальное управление должно быть ориентировано на развитие человеческой индивидуальности, ...

Скачать
46465
0
10

... — примерами ее могут слу­жить распознавание доходных и недоходных инвестиций или разли­чение компаний, имеющих хорошие шансы выжить, от тех, которые должны обанкротиться. Способность к моделированию нелинейных процессов, работе с зашумленными данными и адаптивность дают возможность приме­нять нейронные сети для решения широкого класса финансовых за­дач. Время обучения зависит от сложности задач, ...

Скачать
45054
11
3

... из сторон преследует собственные цели, не всегда совпадающие друг с другом. Неопределенность такого рода при принятии решений относят к классу поведенческих неопределенностей. Теоретической основой нахождения оптимального решения в условиях неопределенности и конфликтных ситуаций является теория игр. Игра - это математическая модель процесса функционирования конфликтующих элементов систем, в ...

0 комментариев


Наверх