2.1 Структурне програмування
Процес програмування також організується по принципу «зверху до низу» : спочатку кодуються модулі верхнього рівня й складаються текстові приклади для їх відладки, при цьому на місце ще не написаних модулей наступного рівня ставляться тимчасові програми. Тимчасові програми у найпростішому випадку видають повідомлення про те, що їм передано керування, а після того повертають його у викликаючий модуль. В інших випадках тимчасові програми можуть видавати значення, задані заздалегідь або обчислені по спрощеному алгоритмі. Таким чином, спочатку створюється логічний кістяк програми, що потім обростає плоттю коду. Логічно застосовувати до процесу програмування висхідну технологію - написати й налагодити спочатку модулі нижнього рівня, а потім поєднувати їх у більші фрагменти, але цей підхід має ряд недоліків.
По-перше, у процесі кодування верхнього рівня можуть бути розкриті ті або інші труднощі проектування більш низьких рівнів програми. Якщо подібна помилка виявляється в останню чергу потрібні додаткові витрати на переробку вже готових модулів нижнього рівня.
По-друге, для налагодження кожного модуля, а потім більших фрагментів програми потрібно щораз складати свої текстові приклади, і програміст часто змушений імітувати те оточення, у якому повинен працювати модуль.
2.2 Модульне програмування
Згодом при проектуванні програм акцент змістився з організації процедур на організацію структур даних. Крім усього іншого це викликано й ростом розмірів програм.
Модулем звичайно називають сукупність зв'язаних процедур і тих даних, якими вони управляють. Визначте, які модулі потрібні; поділіть програму так, щоб дані були сховані в цих модулях. Ця парадигма відома також як "принцип приховання даних". Якщо в мові немає можливості згрупувати зв'язані процедури разом з даними, то він погано підтримує модульний стиль програмування. Тепер метод написання "гарних" процедур застосовується для окремих процедур модуля. Типовий приклад модуля – визначення стека. Тут необхідно вирішити такі завдання:
1. Надати користувачеві інтерфейс для стека (наприклад, функції push () і pop ()).
2. Гарантувати, що подання стека (наприклад, у вигляді масиву елементів) буде доступно лише через інтерфейс користувача.
3. Забезпечувати ініціалізацію стека перед першим його використанням.
Цілком можливо, що реалізація стека може змінитися, наприклад, якщо використати для зберігання зв'язаний список. Користувач у кожному разі не має безпосереднього доступу до реалізації: v й p - статичні змінні, тобто змінні локальні в тім модулі (файлі), у якому вони описані. Оскільки дані є єдина річ, що хочуть приховувати, поняття приховування даних тривіально розширюється до поняття приховування інформації, тобто імен змінних, констант, функцій і типів, які теж можуть бути локальними в модулі. Хоча С++ і не призначався спеціально для підтримки модульного програмування, класи підтримують концепцію модульності. Крім цього С++, природно, має вже продемонстровані можливості модульності, які є в С, тобто подання модуля як окремої одиниці трансляції.
2.3 Об’єктно-орієнтоване програмування
Проблема полягає в тому, що ми не розрізняємо загальні властивості фігур (наприклад, фігура має кольори, її можна намалювати й т.д.) і властивості конкретної фігури (наприклад, окружність - це така фігура, що має радіус, вона зображується за допомогою функції, що малює дуги й т.д.). Суть об’єктно-орієнтованого програмування в тім, що воно дозволяє виражати ці розходження й використовує їх. Мова, що має конструкції для вираження й використання подібних розходжень, підтримує об’єктно-орієнтоване програмування. Всі інші мови не підтримують його. Ті функції, для яких можна визначити заявлений інтерфейс, але реалізація яких (тобто тіло з операторною частиною) можлива тільки для конкретних фігур, відзначені службовим словом virtual (віртуальні). У Симулі й С++ віртуальність функції означає: "функція може бути визначена пізніше в класі, похідному від даного". Для визначення конкретної фігури варто вказати, насамперед, що це - саме фігура й задати її особливі властивості (включаючи й віртуальні функції. У мові С++ клас circle називається похідним стосовно класу shape, а клас shape називається базовим для класу circle. Можлива інша термінологія, що використає назви "підклас" й "суперклас" для класів circle й shape відповідно. Тепер парадигма програмування формулюється так: визначите, який клас вам необхідний; надайте повний набір операцій для кожного класу; спільність класів визначте явно за допомогою спадкування. Якщо спільність між класами відсутній, цілком достатньо абстракції даних. Наскільки застосовне об’єктно-орієнтоване програмування для даної області додатка.
РОЗДІЛ 3. ОБ’ЄКТНО-ОРІЄНТОВАНЕ ПРОГРАМУВАННЯ
Ми не розрізняємо загальні властивості фігур (наприклад, фігура має колір, її можна намалювати і т.д.) і властивості конкретної фігури (наприклад, окружність - це така фігура, що має радіус, вона зображується за допомогою функції, що малює дуги і т.д.). Суть об’єктно-орієнтованого програмування в тім, що воно дозволяє виражати ці розходження і використовує них. Мова, що має конструкції для вираження і використання подібних розходжень, підтримує об’єктно-орієнтоване програмування. Всі інші мови не підтримують його. У цьому програмуванні основну роль грає механізм спадкування, запозичений з мови Симула. Спочатку визначимо клас, що задає загальні властивості усіх фігур:
їclass shape
{
point center;
color col;
// ...
public:
point where () { return center; }
void move ( point to ) { center = to; draw(); }
virtual void draw ();
virtual void rotate ( int );
// ...
};
Ті функції, для яких визначаємо заявлений інтерфейс, але реалізація яких (тобто тіло з операторною частиною) можлива тільки для конкретних фігур, відзначені службовим словом vіrtual (віртуальні). У Симуле і С++ віртуальність функції означає: "функція може бути визначена пізніше в класі, похідному від даного". З урахуванням такого визначення класу пишу загальні функції, що працюють з фігурами:
void rotate_all ( shape v [], int size, int angle )
// повернути всі елементи масиву "v" розміру "size"
// на кут рівний "angle"
{
int i = 0;
while ( i<size )
{
v [ i ] . rotate ( angle );
i = i + 1;
}
}
Для визначення конкретної фігури варто вказати, насамперед , що це - саме фігура і задати її особливі властивості (включаючи і віртуальні функції):
class circle : public shape
{
int radius;
public:
void draw () { /* ... */ };
void rotate ( int ) {} // да, поки функція порожня
};
У мові С++ клас cіrcle називається похідним стосовно класу shape, а клас shape називається базовим для класу cіrcle. Можлива інша термінологія, що використовує назви "підклас" і "суперклас" для класів cіrcle і shape відповідно. Тепер парадигма програмування формулюється так: Визначите, який клас вам необхідний; надайте повний набір операцій для кожного класу; спільність класів виразите явне за допомогою спадкування. Якщо спільність між класами відсутня, цілком достатньо абстракції даних. Наскільки застосовне об’єктно-орієнтоване програмування для даної області додатка визначається ступенем спільності між різними типами, що дозволяє використовувати спадкування і віртуальні функції. У деяких областях, таких, наприклад, як інтерактивна графіка, є широкий простір для об’єктно-орієнтованого програмування. В інших областях,
у яких використовуються традиційні арифметичні типи й обчислення над ними, важко знайти застосування для більш розвитих стилів програмування, чим абстракція даних. Цей засіб, що підтримує об’єктно-орієнтоване програмування, мабуть, надлишковий. Перебування спільності серед окремих типів системи являє собою нетривіальний процес. Ступінь такої спільності залежить від способу проектування системи. У процесі проектування виявлення спільності класів повинне бути постійною метою. Вона досягається двома способами: або проектуванням спеціальних класів, використовуваних як "цеглини" при побудові інших, або пошуком схожих класів для виділення їхньої загальної частини в один базовий клас. Отже, ми вказали, яку мінімальну підтримку повинна забезпечувати мова програмування для процедурного програмування, для заховування даних, абстракції даних і об’єктно-орієнтоване програмування.
ВИСНОВКИ
Підводячи підсумок роботи, хочу зазначити, що в ході роботи було розглянуте об’єктно-орієнтоване програмування. Слід зазначити, що воно широко використовується у програмуванні. У ньому реалізовані основні складаючи: інкапсуляція, поліморфізм та наслідування. Це дає змогу об’єднання даних та використовувати їх функції в одне ціле, що робиться за допомогою класів. Є можливість позначати різні, але сходні дії однаковими іменами та створювати єдині інтерфейси для різних реалізацій одного й того ж алгоритму, позначаючи їх однаковими іменами. І третя властивість, яка є теж важливою – присвоєння одним класом властивостей другого класу.
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
1. Калоєров С.А. Програмування на мові С++: учбовий посібник. – Д.: ООО «Юго – Восток, Лтд», 2004.
2. Стауступ Б. Мова програмування С++. – 3-те вид. / Пер. з англ. – СПб.: БІНОМ, 1999.
Павловська Т.А. Програмування на мові високого рівня - СПб: Пітер, 2003
ДОДАТОК А
Скласти клас для дослідження оцінок студента у сесії на якість (на «4» і «5») і неуспішність (наявність хоча б однієї оцінки «2»). Використовуючи цей клас, скласти програму знаходження кількості студентів групи, успішних на «4» і «5» та неуспішних, а також вирахувати процентне відношення для кожного з цих показників. Студенти у сесії здавали 4 іспиту.
Код програми:
#include<iostream.h> //Підключення бібліотек
class Student{
public: //Опис членів
void cinr();
void coutr();
int r45();
int r2();
private:
int s[4];}; //Масив ввода оцінок
void Student :: cinr() //Функція ввода оцінок студента
{cout<<"Vvedite ocenky studenta: ";
for (int k=0; k<4; k++)
cin>>s[k];
}
void Student :: coutr() //Функція вивіда оцінок студента
{cout<<"Ocenky studenta: \n";
for (int k=0; k<4; k++)
cout<<s[k];
}
int Student :: r45() //Функція дослідження оцінок
{int p=1;
for (int k=0; k<4; k++)
if (s[k]<4)p=0;
return p;
}
int Student :: r2() //Функція дослідження оцінок на «2»
{int p=0;
for (int k=0; k<4; k++)
if (s[k]==2)p=1;
return p;
}
void main()
{int n; //Кількість студентів в групі
cin>>n;
int rx45=0;
int rx2=0;
Student sr;
for (int k=1; k<=n; k++)
{sr.cinr();
sr.coutr();
rx45+=sr.r45();
rx2+=sr.r2();
}
cout<<"Na 4 i 5 sdaly"<<rx45<<"studentov ili"
<<rx45*100.0/n<<"%";
cout<<"Hotya by odnu 2 imeyut"<<rx2<<"studentov ili"
<<rx2*100.0/n<<"%";}
Результати роботи програми:
... ійні технології викладання англійської мови У цей час значні перетворення в галузі освіти торкнулися й навчання іноземної мови в школі. Зокрема стали інтенсивно впроваджуватися в навчальний процес нові інформаційні технології, такі як використання Інтернет-ресурсів, що навчають, комп'ютерних програм тощо. Розробкою й впровадженням у навчальний процес нових інформаційних технологій активно ...
... ./ “_____”_________2009р. Виконавець Студент групи x /xxxxxx./ “_____”____________2009р. Харків 2009 ЗАТВЕРДЖЕНО xxx.03077-01 12 01-1-ЛЗ ВІРТУАЛЬНИЙ ВИМІРЮВАЛЬНИЙ КОМПЛЕКС НА БАЗІ УЧБОВОГО ЛАБОРАТОРНОГО СТЕНДУ EV8031 Текст програми xxxxx.03077-01 12 01-1 Аркушів _48_ Харків 2009 ЗМІСТ 1 ТЕКСТ ПРОГРАМНОГО ЗАБЕСПЕЧЕННЯ ...
... мов полягає в наявності сформованої іншомовної комунікативної компетенції,яка входить до складу когнітивно-технологічного компоненту. 2. Компонентно-стурктурний аналіз професійної компетентності вчителя іноземних мов Професійна компетентність учителя синтезує в собі, по-перше, загальні вимоги до педагога як до особистості, по-друге, особливості його професійно-педагогічної діяльності, по-трет ...
... технологи НДІ постійно працюють з технологами КБ (більш детально питання розробки будуть розглянуті нижче). Технологи КБ повинні знати основи економіки даного виробництва і ціноутворення вироби для того, щоб розроблювальний технологічний процес дозволяв випускати продукцію більш низькою собівартістю, ніж аналоги. Розроблена технологічна документація з КБ надходить до служби головного технолога, ...
0 комментариев