1.1.4 Накопитель флоппи – дисков
Дисковод для гибких дисков, дисковод для флоппи-дисков (FDD) - устройство для чтения информации с гибких дисков (дискет) и записи на них. Дискета представляет собой небольшой трехдюймовый гибкий диск в защитном чехле, на который магнитным способом записывается информация. На гибких дисках можно хранить информацию совсем небольшого объема (до 1,44 Мбайт), в настоящее время они уже практически не используются. Внешний вид накопителя флоппи – диска показан на рис. 5.
Рис. 5. Общий внешний вид накопителя флоппи–диска
1.1.5 Материнская плата
Материнская плата, системная плата (mainboard, motherboard) — плата больших размеров с установленными на ней микросхемами и разъемами для подключения процессора, оперативной памяти и остальных компонентов компьютера.
Размер платы(Форм Фактор). Материнская плата должна иметь тот же форм фактор, что и корпус, в который она будет установлена. Форм факторы бывают следующих типов:
1. AT. Устаревший формат. Использовался в основном в первых поколениях персональных компьютеров. Компьютеры IBM PC AT имеют форм фактор AT, который был уменьшен в размерах и стал называться Baby AT. Размеры обычных плат с форм фактором Baby AT примерно 21,5 сантиметров в ширину и 25 - 27,5 сантиметров в длину. Платы с форм факторами 2/3 и 3/4 Baby AT того же размера, что и обычные платы Baby AT, но на 2,5 - 5 сантиметров короче. Сейчас используется очень редко.
2. ATX. Форм фактор ATX был представлен и разработан корпорацией Intel, чтобы устранить проблему, связанную с помехами, влияющими на кабели, которые вызваны большими дополнительными картами и оборудованием для охлаждения процессора.
AT Extension (расширение AT) - на сегодняшний день стандарт корпуса и системной платы для настольных компьютеров. Плата (стандартный размер - 305 x 244) располагается в нем длинной стороной вдоль задней стенки. Блок питания имеет приточную систему вентиляции, процессор устанавливается в непосредственной близости от него для минимизации длины питающих цепей и охлаждения от встроенного вентилятора(для мощных процессоров все же требуется собственный вентилятор). Некоторые блоки имеют автоматическую регулировку скорости вращения вентилятора в зависимости от температуры. На рис. 6 приведена конструкция материнской платы.
Рис. 6. Конструкция материнской платы
1. Слот для процессора.
2. Слоты для ОЗУ.
3. Разъемы для IDE - устройств (жесткий диск, флоппи – дисковод, CD – ROM).
4. Разъемы для IDE - устройств (жесткий диск, флоппи – дисковод, CD – ROM).
5. Слот для видеокарты.
6. Слоты расширения.
7. Слоты расширения.
8. Набор контактов для соединения с кнопками и лампочками корпуса.
1.1.6 Процессор
Процессор, центральный процессор (CPU) — главная микросхема в компьютере. Именно он занимается выполнением всех программ, которые запущены на компьютере, и именно от него главным образом зависит производительность всей системы. Обычно чем выше тактовая частота процессора, измеряемая в мегагерцах (МГц), тем выше скорость работы всех программ, выполняемых на персональном компьютере с таким процессором. Кроме того, скорость работы центрального процессора определяется еще и его типом. Основой любого процессора является ядро, которое состоит из миллионов транзисторов, расположенных на кристалле кремния.
Разъем процессора – это разъем на системной плате, куда вставляется процессор.
Разъемы различаются по внешнему виду и числу контактов. Для каждой модели процессора существует свой тип материнской платы. Существуют два типа разъемов:
Сокетный (socket - гнездо). Представляет собой разъем, в который вставляются иголки – контакты ЦП, расположенные на нем снизу по периметру.
Слотовый (slot - щель, желоб). Представляет собой длинный ряд контактов в пластмассовой рамке. Микропроцессор для такого разъема расположен на специальной плате с рядом контактов на одной стороне. Эта плата вставляется вертикально. Общий внешний вид процессора приведен на рис. 7.
Рис. 7. Внешний вид процессора
1.1.7 Оперативная память
В оперативной памяти элементарная ячейка памяти представляет собой конденсатор, способный в течение короткого промежутка времени сохранять электрический заряд, наличие которого можно ассоциировать с информационным битом. При считывании данных конденсатор разряжается через схему считывания, и если заряд конденсатора не был нулевым, то на выходе схемы считывания устанавливается единичное значение.
Существует несколько типов модулей памяти:
1. SIMM(Single In line Memory Module – модуль памяти с одним рядом контактов) – модуль памяти, вставляемый в зажимающий разъем; применялся во всех платах до Pentium, а также во многих адаптерах, принтерах и прочих устройствах. SIMM имеет контакты с двух сторон модуля, но все они соединены между собой, образуя как бы один ряд контактов.
SIMM бывают двух видов:
30-и контактные (8-разрядная шина данных) – использовался в AT286 – 486 платах;
72-х контактные (16-разрядная шина данных) – использовался в большинстве 486 и во всех Pentium платах. SIMM уже очень устарела и сейчас встречается только в старых компьютерах
2. DIMM(Dual In line Memory Module – модуль памяти с двумя рядами контактов) – модуль памяти, похожий на SIMM, но с раздельными контактами (обычно 2 x 84), за счет чего увеличивается разрядность или число банков памяти в модуле. Применяется в современных компьютерах, начиная с
Pentium. DIMM имеют 168 контактов.
3. RIMM(Rambus in line Memory Module) – модуль памяти, включающий один или несколько Direct RDRAM-чипов и организует непрерывность канала. Недопустимо оставлять RIMM-слоты свободными, так как это приводит к разрыву канала с терминатором, находящимся на системной плате в конце канала, поэтому необходимо их заполнить continuity RIMM(модули без чипов, а только с каналами).
Модули RIMM имеют размеры, сходные с размерами DIMM. Это позволяет вставлять их во все материнские платы с соответствующим форм-фактором. Модули имеют 168 контактов, могут солдержать любое число чипов и могут быть как односторонние так и двусторонние, объем до 1 Гб.
На рис. 8 приведен внешний вид модуля памяти.
Рис. 8. Модуль памяти
Внешние компоненты
Внешние компоненты – компоненты которые размещаются вне корпуса компьютера и подключаются к нему через различные интерфейсные разъемы.
Внешние компоненты:
1. Мышь.
2. Клавиатура.
3. Монитор.
4. Принтер.
1.2.1 Мышь
Мышь (mouse) – устройство, предназначенное для быстрого и точного управления курсором на экране монитора персонального компьютера.
Традиционная мышь представляет собой небольшое устройство, которое удобно ложится под руку. В верхней части устройства расположены управляющие кнопки (обычно их три, причем часто роль третьей кнопки исполняет колесо прокрутки или скроллинга), позволяющие задавать начало и конец движения, осуществлять выбор меню и т.п.
Классификации мышей. По способу подключения - кабельное подключение:
1. COM-порт. Устаревшее медленное соединение, без горячего подключения, с обязательной ручной установкой драйверов
2. PS/2-порт. Основной способ подключения мышей. Горячего подключения нет, драверы ставить надо, зато при помощи PS/2 Rate можно изменять частоту опроса мыши.
3. USB-порт. Самый быстрый порт. С горячим подключением, автоматической установкой, стандартно большая частота опроса порта. Но часто таковые возможности для работы мыши не требуются.
Беспроводное подключение
1. Радио-связь. Весьма надежный вид общения, не требует визуального контакта, слабо чувствителен к помехам.
2. Инфракрасный порт. Работает только при условии прямой видимости на расстоянии не более 2 метров, чувствителен к помехам в виде света.
По способу действия Механические. У них снизу имеется шарик, при движении он вращает ролики, на них стоят зубчатые колесики, положение последних определяют опто-пары.
Плюсы: относительная простота и дешевизна.
Минусы: чувствительность к грязи, неизбежные для любого механического устройства люфт и износ.
На рис. 9 приведен вид механической мыши.
Оптические. Более развитые. Имеют снизу микрокамеру, она снимает положение мышки (порядка 1000 раз в секунду), ее данные анализируются процессором.
Плюсы: нечувствительность к грязи, работоспособность практически на любой поверхности (кроме зеркальной и отражающей), отсутствие любой механики.
Минусы: сложность в изготовлении, более дорогие.
Остальные виды характеризуются смешением: проводные оптические, радио-механические, ИК-оптические на аккумуляторах, с разными кнопками/колесами/прочими атрибутами и подключающиеся несколькими способами.
Трекбол — небольшая коробка с шариком, встроенным в верхнюю часть корпуса. Пользователь рукой вращает шарик и перемещает, соответственно, курсор. В отличие от мыши, трекбол не требует свободного пространства около компьютера, его можно встроить в корпус машины. Чаще всего его используют как замену мыши, особенно для работы с графикой. Внешний вид трекбола приведен на рис. 10.
Рис. 9. Механическая мышь
Рис. 10. Внешний вид трекбола
... монтажника укладывают коврик из губчатой резины, а для хранения легко воспламеняющих жидкостей используют металлический ящик. 7 Экономическая часть 7.1 Расчет себестоимости на устройство управления вентиляторами компьютера через порт LPT Себестоимость - изделия, детали представляет собой сумму затрат в денежном выражении на производство и реализацию, приходящихся на единицу продукции. В ...
... , в чем заключаются конкурентные преимущества каждой организации. Зная сильные и слабые стороны, необходимо строить свою стратегию выхода на региональный рынок компьютеров города Тулы. Предлагается рассмотреть особенности организации коммерческой деятельности этих фирм по следующим направлениям: Ø Оценка ценовой политики, Ø Предлагаемый ассортимент, Ø Уровень сервиса, ...
... датчика, наличием нерассматриваемых источников тепла, особенностями конфигурации компонентов относительно потока воздуха от вентиляторов и др.). Это еще раз доказывает актуальность проведения экспериментальных исследований в изучении тепловых режимов устройств ЭВМ и, следовательно, создание для этих целей специализированного устройства (модуля). 7 РАЗРАБОТКА ТЕХНОЛОГИИ СБОРКИ МОДУЛЯ АЦП 7.1 ...
... схема устройства для аппаратного шифрования информации, которая соответствует приведенным выше требованиям, изображена на рисунке 1.9. Рис. 1.9 – Структурная схема устройства аппаратного шифрования 2. РАЗРАБОТКА СХЕМОТЕХНИЧЕСКОЙ РЕАЛИЗАЦИИ АППАРАТНОГО ШИФРАТОРА 2.1 Выбор элементной базы для шифратора Согласно техническому заданию, элементная база для аппаратного шифратора должна ...
0 комментариев