2 Основные принципы построения системы управления зданием

Система полностью открыта, т.е. не существует ограничений на ее расширение и модернизацию. Под открытостью понимается наличие единого протокола взаимодействия оборудования разных производителей, чтобы технические устройства не конфликтовали между собой, а были бы совместимы и представляли единое целое.

Компоненты системы – как программные, так и аппаратные – не привязаны к какому-то одному производителю.

Предлагаемая архитектура СУЗ позволяет сократить число компонентов системы, отказавшись от ряда ее дублирующих элементов.

Решения для построения СУЗ имеют высокую наращиваемость.

Все системы управления интегрируются друг с другом с минимальными затратами, а их обслуживание организовано оптимальным образом.

Система управления зданием работает в интерактивном режиме и при возникновении экстремальной ситуации подсказывает обслуживающему здание персоналу, как развиваются события, какие действия уже выполнены, а также что еще предстоит сделать и какие команды подать. Вся информация о происходящих процессах протоколируется, обеспечивая анализ и контроль всей информации.

Основной принцип управления инженерным оборудованием состоит в объединении в единый взаимоувязанный комплекс различных инженерных систем, а также создание единых интерфейсов для его интеграции с другими компонентами Интеллектуального здания (системой безопасности, связи, информационной системой). Комплекс аппаратно-программных средств позволяет организовать управление и взаимодействие со всеми инженерными подсистемами здания посредством графического интерфейса человек – компьютер.


3 Пример системы управления зданием

 

Система управления зданием – это комплексное решение автоматизации работы всех инженерных систем поддержки здания и интеграции оборудования различных производителей в единый конгломерат.

В качестве примера можно привести систему управления зданием на базе оборудования и программного обеспечения компании Johnson Controls.

Управляющие функции в такой системе выполняет интеллектуальная автоматика здания. Система предназначена для мониторинга, диспетчеризации и управления оборудованием инженерных систем, включая устройства безопасности.

Благодаря строго дозированному расходу электричества достигается значительная экономия энергопотребления.

Система позволяет уложиться в энергетические лимиты муниципальных служб города. Другими словами – избежать расходов на строительство подстанций. Это особенно актуально для центра города, где чаще всего строятся наиболее крупные торговые и офисные центры.

Система управления зданием дает возможность максимально использовать функциональный потенциал оборудования для управления климатическими, осветительными и другими инженерными системами здания.

Это достигается за счет гибкой настройки взаимодействия между элементами системы. Интеллектуальная система управления зданием с энергосберегающим оборудованием позволяет снизить коммунальные платежи на 15–20%. Это немало, например, для бизнес-центра площадью порядка 50 000 кв. метров, где ежегодные коммунальные расходы составляют около 100 долларов на 1 кв. метр. Управляемое электроникой здание более экономично в эксплуатации, чем обычное. Однако первоначальные инвестиции в такое оборудование превышают расходы на техническое оснащение делового центра.

Срок службы системы управления зданием производства Johnson Controls около 10 лет с учетом замены неисправных и выработавших свой ресурс компонентов. Среднее время наработки на отказ для интеллектуальной системы составляет не менее 10 000 часов, а среднее время восстановления работоспособности – 0,5 часа.

Как устроена система

Система управления зданием имеет трехуровневую структуру:

· уровень локального управления,

· уровень автоматизации,

· уровень управления информацией и администрирования системы.

На уровне локального управления располагаются первичные датчики. Они обеспечивают сбор информации о системе. Модульные устройства и контроллеры позволяют обеспечивать управление локальными системами нижнего уровня.

Завершают цикл локального управления устройства интеграции. Они осуществляют передачу информации о работе локального оборудования в сеть.

Уровень автоматизации оснащается цифровыми контроллерами. Они обеспечивают автоматическое управление группами локальных систем и передачу данных о работе этих систем на вышестоящую ступень сети. Центральное звено этого уровня – сетевые процессоры. В их функции, помимо управления и обработки информации, входит обеспечение связи между верхними уровнями сети и локальными системами.

Для интеграции оборудования различных производителей используются различные сетевые технологии (например, системная шина EIB, технология LonWorks, открытый протокол BacNet).

Эти технологии предназначены для управления коммуникациями зданий и сооружений (освещение, отопление, кондиционирование, вентиляция, жалюзи, охранная и пожарная сигнализация и т. д.).

На уровне управления информацией и администрирования системы располагаются рабочие станции диспетчеров со специализированным программным обеспечением. Здесь архивируется и анализируется работа всех систем здания в целом.

Центральным пунктом управления и мониторинга в системе управления зданием является рабочая станция диспетчера. Она позволяет отслеживать состояние всех подсистем и устройств здания, производить настройку их параметров.

Рабочие станции диспетчера (OWS) используют стандартные платформы аппаратного обеспечения ПК и работают в среде Microsoft Windows.

Программное обеспечение для рабочей станции диспетчера предполагает единый графический интерфейс для всех приложений системы управления зданием, четкую структуру приложений и навигацию между программными компонентами.

Это обеспечивает максимальную простоту работы с системой и удобство поиска информации.

Рабочая станция диспетчера сочетает текстовую, табличную и графическую форму представления данных. Диспетчер может вывести на экран информацию о системе управления зданием с любой степенью детализации. Возможен контроль в масштабе плана здания и технических параметров отдельного прибора. Эти параметры включают в себя информацию о работе устройства, зону нечувствительности, данные о сигналах тревоги и связанные с ними сообщения.

Процесс устранения сбоев в системе управления зданием оптимизирован.

Система обрабатывает сообщения о тревоге, поступающие с разных приборов, в строгом соответствии с приоритетами. События с наивысшим приоритетом выводятся на экран диспетчера и обрабатываются в первую очередь. Кроме того, аварийные сигналы распределяются по рабочим станциям разных диспетчеров в соответствии с их сферой ответственности.

Предусмотрен режим защиты от ситуаций игнорирования сигналов тревоги. Высокоприоритетный сигнал тревоги может периодически выводиться на экран рабочей станции. Это будет напоминанием о том, что неполадка не устранена.

 


Информация о работе «Электронные изделия на основе программируемых микроконтроллеров»
Раздел: Информатика, программирование
Количество знаков с пробелами: 29822
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
67372
0
0

... ход выполнения программы и видеть соответствие между исходным текстом, образом программы в машинных кодах и состоянием всех ресурсов эмулируемого микроконтроллера. Следует отметить, что высокоуровневый отладчик обеспечивает выполнение всех своих функций только в том случае, если используется кросс-компилятор, поставляющий полную и правильную отладочную информацию (не все компиляторы, особенно их ...

Скачать
130405
7
0

... AVR Studio запомнит расположение окон и использует эти установки при следующем запуске проекта. 3.2. Анализ методики реализации разработки программного обеспечения 3.2.1. Классификация вариантов заданий Цель заданий – практическое освоение методики программирования на ассемблере микроконтроллеров ATMEL семейства AVR, отладка программы на симуляторе AVR Studio и программирование кристалла с помощью ...

Скачать
138361
13
23

... программирование микроконтроллера, как инструмента накопления данных и управления ресурсами, с учётом необходимой и достаточной степени доступа к конечной аппаратуре. Модуль накопления для задач многомерной мессбауэровской спектрометрии спроектирован с учётом следующих условий: -  Синхронизация накопителя с системой доплеровской модуляции осуществляется внешними тактовыми импульсами “старт” и ...

Скачать
110685
21
24

... и n-1 сегментами. Такой подход задан в светодиодном драйвере Maxim MAX6951 для управления 8-ю цифрами на всего 9-ти ножках. РАЗДЕЛ 2 РАЗРАБОТКА СВЕТОДИОДНОЙ МАТРИЦЫ 2.1 Постановка задачи Требуется разработать светодиодную матрицу, которая будет использоваться в праздничные и торжественные дни, на дискотеках, создавая различные световые эффекты. Разработка устройства будет производиться с ...

0 комментариев


Наверх