2. Магнитопорошковый метод

 

Магнитопорошковый метод предназначен для выявления поверхностных и под поверхностных (на глубине до (1,5 ... 2) мм) дефектов типа нарушения сплошности материала изделия: трещины, волосовины, расслоения, не проварка стыковых сварных соединений, закатов и т.д.

Магнитные частицы порошка, попадая в поле дефекта под действием электрического тока 7, намагничиваются и в результате притягивающей сипы перемещаются в зону наибольшей неоднородности магнитного по­ля. Порошинки, притягиваясь друг к другу, выстраиваются в цепочки, ориентируясь по магнитным силовым линиям поля 2, и, накапливаясь, образуют характерные рисунки в виде валиков 3, по которым судят о на­личии дефекта 4.

Этим методом можно контролировать изделия любых габаритных размеров и форм, если магнитные свойства материала изделия (относительная максимальная магнитная проницаемость не менее 40) позволяют намагничивать его до степени, достаточной для создания поля рассеяния дефекта, способного притянуть частицы ферромагнитного порошка.

Магнитопорошковый метод - это метод неразрушающего контроля поверхностей изделий из ферромагнитных материалов в их производстве и эксплуатации, суть которого такова: магнитный поток в бездефектной части изделия не меняет своего направления; если же на пути его встречаются участки с пониженной магнитной проницаемостью, например дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы (N и S) и, как следствие, магнитное поле над дефектом. Так как магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.

Наибольшая вероятность выявления дефектов достигается в случае, когда плоскость дефекта составляет угол 90грд. с направлением намагничивающего поля (магнитного потока). С уменьшением этого угла чувствительность снижается и при углах, существенно меньших 90грд. дефекты могут быть не обнаружены.

Чувствительность МПД определяется:

магнитными характеристиками материала контролируемого изделия (магнитной индукцией (В),

остаточной намагниченностью (Br ),

максимальной магнитной проницаемостью (µmax ),

коэрцитивной силой (Н0),

шероховатостью поверхности контроля,

напряженностью намагничивающего поля, его ориентацией по отношению к плоскости дефекта,

качеством дефектоскопических средств и освещенностью контролируемой поверхности.

Магнитопорошковый метод применяется практически во всех отраслях промышленности:

авиапромышленность

машиностроение

автомобильная промышленность

металлургия

транспорт (авиация, железнодорожный, автотранспорт)

судостроение

строительство (стальные конструкции, трубопроводы)

Методика применения

Магнитопорошковый метод применяется для выявления в объектах разных размеров и формы, изготовленных из ферромагнитных материалов поверхностных и подповерхностных дефектов. С помощью магнитопорошкового метода могут быть обнаружены различные трещины, волосовины и закаты, непровары сварных соединений и другие дефекты шириной раскрытия несколько микрометров. Метод может быть использован для контроля объектов с немагнитным покрытием. Существуют различные виды контроля:

«Cухой» и «мокрый» способы нанесения индикатора на контролируемый объект

Флуоресцентный или цветной индикатор для контроля при УФ или дневном свете

Последовательность выполнения технологических операций магнитопорошкового контроля приведена в следующем разделе.

3. Этапы магнитопорошкового контроля

1. Подготовка детали к контролю.

Подготовка детали к контролю заключается в очистке поверхности детали от отслаивающейся ржавчины, грязи, а также от смазочных материалов и масел, если контроль проводится с помощью водной суспензии или сухого порошка. Если поверхность детали темная и черный магнитный порошок на ней плохо виден, то деталь иногда покрывают тонким просвечивающим слоем белой контрастной краски.

2. Намагничивание детали.

Намагничивание детали является одной из основных операций контроля. От правильного выбора способа, направления и вида намагничивания, а также рода тока во многом зависит чувствительность и возможность обнаружения дефектов.

3. Нанесение на поверхность детали магнитного индикатора (порошка или суспензии).

Оптимальный способ нанесения суспензии заключается в окунании детали в бак, в котором суспензия хорошо перемешана, и в медленном удалении из него. Однако этот способ не всегда технологичен. Чаще суспензию наносят с помощью шланга или душа. Напор струи должен быть достаточно слабым, чтобы не смывался магнитный порошок с дефектных мест. При сухом методе контроля эти требования относятся к давлению воздушной струи, с помощью которой магнитный порошок наносят на деталь. Время стекания с детали дисперсной среды, имеющей большую вязкость (например, трансформаторного масла), относительно велико, поэтому производительность труда контролера уменьшается.

4. Осмотр детали. Расшифровка индикаторного рисунка и разбраковка.

Контролер должен осмотреть деталь после стекания с нее основной массы суспензии, когда картина отложений порошка становится неизменной.

Детали проверяют визуально, но в сомнительных случаях и для расшифровки характера дефектов применяют оптические приборы, тип и увеличение которых устанавливают по нормативным документам. Увеличение оптических средств не должно превышать x10.

Разбраковку деталей по результатам контроля должен производить опытный контроллер. На рабочем месте контроллера необходимо иметь фотографии дефектов или их дефектограммы (реплики с отложениями порошка, снятые с дефектных мест, с помощью клейкой ленты или другими способами), а также контрольные образцы с минимальными размерами недопустимых дефектов.

Вид и форма валиков магнитного и люминесцентного магнитного порошка во многих случаях помогают распознать нарушения сплошности.

5. Размагничивание и контроль размагниченности. Удаление с детали остатков магнитного индикатора.

Применяют два основных способа размагничивания. Наиболее эффективный из них - нагрев изделия до температуры точки Кюри, при которой магнитные свойства материала пропадают. Этот способ применяют крайне редко, так как при таком нагреве могут изменяться механические свойства материала детали, что в большинстве случаев недопустимо.

Второй способ заключается в размагничивании детали переменным магнитным полем с амплитудой, равномерно уменьшающейся от некоторого максимального значения до нуля. В зависимости от материала изделия, его размеров и формы применяют переменные магнитные поля различных частот: от долей Гц до 50 Гц.


Заключение

При выполнении данного реферата я дал общую характеристику магнитных методов неразрушающего контроля и более подробную характеристику магнитопорошкового метода.

Данный метод предназначен для выявления поверхностных и подповерхностных дефектов типа нарушения сплошности материала изделия: трещины, волосовины, расслоения, непроварка стыковых сварных соединений, закатов и т.д.

Этим методом можно контролировать изделия любых габаритных размеров и форм, если магнитные свойства материала изделия позволяют намагничивать его до степени, достаточной для создания поля рассеяния дефекта, способного притянуть частицы ферромагнитного порошка. Магнитопорошковый метод применяется практически во всех отраслях промышленности.

В разделе «Этапы магнитопорошкового контроля» приведена последовательность выполнения технологических операций магнитопорошкового контроля:

подготовка детали к контролю à намагничивание детали à нанесение на поверхность детали магнитного индикатора à осмотр детали, расшифровка индикаторного рисунка и разбраковка à размагничивание и контроль размагниченности, удаление с детали остатков магнитного индикатора.


Информация о работе «Магнитопорошковый метод контроля»
Раздел: Промышленность, производство
Количество знаков с пробелами: 13059
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
18131
4
12

... Электропотенциальные приборы применяют для измерения толщины сте­нок деталей, для изучения анизотропии электрических и магнитных свойств, обусловленной приложенными к объекту контроля механическими напряже­ниями, но основное назначение этих приборов – измерение глубины трещин, обнаруженных другими методами неразрушающего контроля. Электропотен­циальный метод с использованием четырех электродов, ...

Скачать
54203
9
5

... генерального директора — главный инженер ОАО «Научно-исследовательский институт технологии, контроля и диагностики железнодорожного транспорта», кандидат технических наук В.Л. ЛАЗАРЕВ, главный конструктор Проектно-конструкторского бюро локомотивного хозяйства ОАО «РЖД» Н.Ю. ИЛЬЮЩЕНКОВА, начальник сектора неразрушающего контроля Проектно-конструкторского бюро вагонного хозяйства ОАО «РЖД» На ...

Скачать
125770
27
17

... участка. Принимаем процент узлов и деталей, поступающих в ремонт на условиях кооперации из эксплуатационного депо для тележечного участка =30% Принимаем программу для тележечного участка 1000 ед. 2. Совершенствование технологии контроля автосцепочного устройства   2.1 Виды и порядок осмотра автосцепочного устройства Автосцепное устройство подвижного состава должно постоянно находиться ...

Скачать
83192
3
36

... , гидравлических системах и проч. Соленоиды на переменном токе применяются в качестве индуктора для индукционного нагрева в индукционных тигельных печах.4. Расчет намагничивающего устройства для магнитопорошкового метода неразрушающего контроля   Исходные данные для расчета: 1 Соленоид круглого сечения диаметром 30 мм и длиной 200 мм; 2 Материал сердечника – Сталь 20; 3 Провод обмотки ...

0 комментариев


Наверх