1.3 Средства измерения
Основные виды средств измерений следующие:
- мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера, например, мера массы – гиря;
- измерительный прибор –это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия оператором. Показания измерительного прибора могут быть представлены в аналоговой или цифровой форме. В показывающих приборах производится только отсчитывание показаний, в регистрирующих приборах осуществляется запись показаний в форме диаграммы и печатание в цифровой форме. В интегрирующих измерительных приборах измеряемая величина подвергается интегрированию по времени или по другой независимой переменной.
- измерительный преобразователь –это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не подающейся непосредственному восприятию оператором. Измерительные преобразователи в зависимости от их назначения подразделяются на первичные, промежуточные, передающие, масштабные и другие.
- первичный измерительный преобразователь – это преобразователь, к которому подведена измеряемая величина. Передающий измерительный преобразователь предназначен для дистанционной передачи сигнала измерительной информации, масштабный измерительный преобразователь – для изменения измеряемой величины в заданное число раз.
- измерительное устройство – это средство измерений, состоящее из измерительных приборов и измерительных преобразователей. В зависимости от назначения измерительные устройства подразделяются на первичные и вторичные. Под первичным измерительным устройством понимают средство измерений, к которому подведена измеряемая величина. Вторичными измерительными устройствами (вторичными приборами) называют средства измерений, которое предназначены для работы в комплекте с первичными измерительными устройствами.
Первичные измерительные устройства часто называют датчиками. Датчик прибора для измерений той или иной величины – это конструктивная совокупность ряда измерительных преобразователей, размещенных непосредственно у объекта измерения.
- измерительные информационные системы – это измерительное устройство, которое осуществляет многоканальное измерение и обработку информации по некоторому заданному алгоритму.
В зависимости от назначения средства измерений подразделяются на три категории:
1) рабочие меры, измерительные приборы и преобразователи;
2) образцовые меры, измерительные приборы и преобразователи;
3) эталоны.
Рабочие средства измерений применяют для измерений в производственных и лабораторных условиях. Образцовые средства измерений предназначены для проверки рабочих средств измерений. Эталоны предназначены для хранения единиц измерений и проверки мер, приборов и преобразователей высшего разряда точности.
2. Погрешности измерений
При измерении любой величины, как бы тщательно мы ни производили измерения, не представляется возможным получить свободный от искажения результат. Причины эти искажений могут быть различны. Поэтому качество передачи информации и качество результатов измерений принято характеризовать размером допущенных погрешностей.
Погрешностями измерений называют отклонения результатов измерений от истинных значений измеряемой величины.
Погрешности классифицируются по целому ряду признаков:
1) Инструментальные и методические погрешности.
2) Основная и дополнительная погрешность.
3) Систематические, прогрессирующие и случайные погрешности.
4) Абсолютная, относительная и приведенная погрешности.
5) Аддитивные и мультипликативные погрешности.
Инструментальная погрешность зависит от качества изготовления элементов прибора. Чем выше качество изготовления элементов, тем меньше погрешность.
Причиной возникновения методической погрешности является то, что мы сознательно измеряем на выходе прибора не ту величину, которая нам нужна, а другую, которая отражает нужную лишь приблизительно, но гораздо проще технически реализуется. Такой путь широко используется в приборостроении и позволяет создать наиболее простые, надежные и дешевые приборы.
Любой измерительный преобразователь или измерительный прибор работает в сложных, во времени изменяющихся условиях. Поэтому наряду с чувствительностью к измеряемой величине он не минуемо имеет некоторую чувствительность к не измеряемым, но влияющим на нее величинам, т.е. помехам (температура окружающей среды, давление, вибрация, перепад напряжения источника питания и т.п.). При градуировке прибора, все величины влияющие на измеряемую величину поддерживаются в узких пределах их изменения (температура – в пределах 2050С, атмосферное давление и напряжение питания – в пределах 3 % от номинального, частота – в пределах 2 % и т.д.). Оговоренные в технической документации условия эксплуатации называются нормальными, а суммарную результирующую погрешность, возникающую в этих условия, называют основной.
В эксплуатационных условиях прибору или преобразователю приходится работать при изменении температур от –50 до + 500С, давлении от 0,01 до 10 атм., напряжения питания 20 % и частоты до 10 %, что вызывает погрешности, значительно выше основной. Изменения показаний прибора при отклонении условий эксплуатации от нормальных называются дополнительными погрешностями. В тяжелых рабочих условиях дополнительные погрешности могут быть больше основной.
Систематическими называются погрешности, которые остаются постоянными при повторных измерениях одной и той же величины. Они слагаются из основной и дополнительной погрешностей. Эти погрешности благодаря постоянству во времени функции влияния могут быть скорректированы введением дополнительных корректирующих преобразователей, воспринимающих влияющую величину и вводящих соответствующую поправку в результат преобразования.
Прогрессирующими называются погрешности, медленно изменяющиеся с течением времени. Эти погрешности, как правило, вызываются процессами старения деталей прибора. Они могут быть скорректированы введением поправки лишь на данный момент времени, а далее вновь постепенно нарастают. Поэтому прогрессирующие погрешности требуют непрерывного повторения коррекции.
Случайными называются неопределенные по своей величине или недостаточно изученные погрешности. В появлении различных значений этих погрешностей не удается установить какой-либо закономерности. Они определяются сложной совокупностью причин, трудно подающихся анализу. Их частные значения не могут быть предсказаны, а для всей их совокупности может быть установлена закономерность лишь для частот появления их различных значений. В подавляющем большинстве случаев процесс появления случайных погрешностей есть случайный стационарный процесс, поэтому разнообразие величин случайных погрешностей характеризуют указанием закона распределения их вероятностей или указанием параметров этого закона, разработанных в теории вероятности и теории информации.
Разделение погрешностей на систематические, прогрессирующие и случайные является лишь приемом их анализа. В реальной же действительности все три составляющие проявляются совместно.
Абсолютная погрешность представляет собой разность между измеренным значением (показанием прибора) и действительным или истинным значением, найденным, например, при помощи образцового прибора.
= х – хд (3.1)
Относительная погрешность, указываемая в процентах, есть отношение абсолютной погрешности к действительному значению, т.е.:
γ = · 100 (3.2)
Приведенная погрешность, указываемая в процентах, есть отношение абсолютной погрешности к постоянной величине, которая представляет собой конечное значение предела измерения, т.е.:
δ = · 100 (3.3)
Погрешность, не зависящая от значения преобразуемой величины, называется аддитивной, или погрешностью нуля (рис.1). Если она является систематической, то она может быть скорректирована путем смещения шкалы или нулевого положения указателя. Если же аддитивная погрешность является случайной, то она не может быть скорректирована, и реальная характеристика, смещаясь произвольным образом, но оставаясь параллельной самой себе, образует полосу погрешностей, ширина которой остается постоянной для любых значений измеряемой величины (рис.4).
Абсолютная погрешность, пропорциональная текущему значению преобразуемой величины, называется мультипликативной, или погрешностью чувствительности. На рис. 2 представлен случай, когда абсолютная погрешность оказывается пропорциональна текущему значению преобразуемой величины. Здесь реальная характеристика прибора отклоняется от номинальной пропорционально преобразуемой величине и является систематической мультипликативной погрешностью. Если же отклонение является случайным, то реальная характеристика образует полосу погрешностей (рис.3).
У У
реальная характеристика реальная характеристика
Δ
... научных и организационных основ, технических средств, правил и норм для достижения единства и требуемой точности измерений. Метрологическое обеспечение Научная основа Теоретическая и прикладная метрология Организационная основа Государственная метрологическая служба, метрологические службы федеральных органов исполнительной власти и юридических лиц Нормативно-правовая основа Закон «Об ...
... являются игровые автоматы, диагностическое оборудование. По метрологическому назначению все СИ подразделяются на два вида: рабочие СИ и эталоны. Рабочие СИ (РСИ) предназначены для проведения технических измерений. По условиям применения они могут быть: 1) лабораторными, используемыми при научных исследованиях, проектировании технических устройств, медицинских измерениях; 2) производственными, ...
... ) В Показание данного вольтметра 100,18 В, оно находится в указанном пределе, значит прибор годен к применению. 2.2 ЗАДАНИЕ 2 Норма времени на поверку определенной группы СИ зависит от ряда показателей, которые устанавливаются метрологической службой. Необходимо определить исходный норматив времени на поверку СИ с учетом заданных показателей РЕШЕНИЕ: Зная указанные ...
... результат измерений напрямую зависел от человека, производящего измерения. При повторном взвешивании погрешность была очень высока и зависела от дрожания рук и от того, насколько точно вертикально было положение безмена. Система обязательной сертификации Организационная структура системы сертификации посуды Конкретные виды ...
0 комментариев