1. Трихлорбензол Cl


1,2,4-Трихлорбензол - жидкостъ, с трудом растворяется в спирте. Токсическое действие - сначала возбуждает, а потом угнетает центральную нервную систему; вызывает изменение крови. Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны 10 мг/м3. При обследовании рабочих, занятых в производстве возможны жалобы на головную боль, тошноту, боли в подреберье, в сердце. Возможно увеличение печени, раздражение слизистых оболочек верхних дыхательных путей и глаз.

2. Сточные воды - образуются в процессе пропитки древесины водным раствором пасты ПХДС и на стадии промывки пропиточной ванны. Такие воды содержат приблизительно 1,5-2% раствор пасты ПХДС удаляемые с поверхности ванны. Они не представляют собой опасности для окружающей среды потому после предварительной очистки их можно отводить на городские очистные сооружения. В сточных водах деревообрабатывающих заводов содержатся взвешенные вещества, нефтепродукты (масла, эмульсин и т.п.), относящиеся к 4 классу опасности. [6Ш]

3. Характерными выделениями загрязняющих веществ в атмосферу при обработке древесины являются пыль и древесные опилки, относящиеся к 4 классу опасности и контролирующиеся в рабочей зоне с периодичностью 1 раз в квартал [61]

Мероприятия по снижению влияния отходов производства на человека и окружающую природную среду.

Потенциально опасные производственные участки в производстве огнеупорной древесины имеются на стадии пропитки древесных образцов т.к пропиточная ванна находится в негерметичном состоянии. С целью снижения вероятности выхода вредных веществ на стадиях пропитки и смешения компонентов для удаления неприятного запаха и очистки воздуха в техпроцессе применяют приточно-вытяжные вентиляционные системы.

В вентиляционных системах обычно используют пылеулавливающие камеры, фильтры из металлических сеток, увлажнение водой или маслом, и на основе бумаги или стеклянного волокна. Конструкции такого типа обладают недостатками. Пылеулавливающие камеры малоэффективны, так как с их помощью можно задерживать только крупные диаметром 10 мкм частицы пыли. Влажные сетчатые фильтры требуют частой промывки (ручной или механизированной) и сложны в эксплуатации. Фильтры тонкой очистки на основе бумаги и стеклянного волокна недолговечны, их необходимо часто продувать или заменять.

Специально для очистки воздуха в помещениях и атмосферных выбросов от пахучих органических веществ в существующих вентиляционных системах используются нейтрализаторы одорофорных соединений.

Эти нейтрализаторы можно встраивать непосредственно в существующие воздуховоды, что снижает затраты на реконструкцию вентиляционной системы, так как не требует сооружения новых вентиляционных камер.

Нейтрализаторы изготавливаются трех типоразмеров, соответствующих стандартным размерам воздуховодов и различаются по производительности. Использование данного типа установок дает возможность полностью отказаться от принудительной приточной вентиляции или значительно уменьшить ее объемы. При этом сокращается расход энергии на нагрев приточного воздуха в холодное время года приблизительно в 1,75 раза [56].

На стадии подготовке ванны к пропитки и после её осуществления образуются сточные воды, содержащие приблизительно 1,5-2% -ный раствор пасты ПХДС. Такие воды не представляют особой опасности для окружающей среды, поэтому после предварительной отчистки их можно отводить на очистные сооружения, где они смешиваясь с водами хозяйственно-бытового использования, сбрасываются в водоемы. Однако экономически целесообразнее использовать водооборот, позволяющий на 80% сократить потребление пресной воды из природных источников. Для очистки воды применяют фильтр с сорбционной нерегенерируемой заменяемой загрузкой, в качестве которой выступают шунгит, глауконит, активированный уголь, углетканный материал "Бусофит". Наиболее перспективным из перечисленных сорбентов является углетканный материал "Бусофит". Выпускается в виде ткани, трикотажа, лент различной ширины; обладает сравнительными преимуществами: отсутствие запаха, нерастворимость в воде, хемостойкость, неплавкость, пожаро-, взрывобезопасность, нетоксичность, нерадиоктивность. Кроме того, не требует дополнительной обработки перед применением, может подвергаться регенерации и многократно использоваться. Расход "Бусофита" на 1 м2 раствора составляет 0,2-0,4 кг (1-2 м2). Стоимость данного сорбента эквивалентна аналогичному показателю для активированного угля (приблизительно 60 тыс. руб. /тонну), однако он окупает себя в процессе эксплуатации. Степень очистки при использовании углетканного сорбента равна 95% [58].


Операционная схема движения отходов. Схема размещения и обращения с отходами.

Наименование

материала

Ед.

Изм.

Посту

пило

Впр-во

Выход в

продукцию

Безвозвратные потери Отходы

 

Выброс в

атмосферу

Отходы,

уносимые

с водой

Технологи-

ческие

потери

Всего

Наимено-

вание

Посту-

пило в

обработку

Поступило

на размещение

Паста

ПХДС

кг 1000 996,9 0,01 0,2 0,1 0,31

1. Пары

пасты

(трнхлор-

бензол)

0,01 0,01

2. ПХДС+

Н2О

(раствор)

0,7 0,7

Расчёт экономической величины предотвращённого ущерба.

Возможный ущерб (для атмосферы)

У возм= g * О¨*Smi * Ai

О¨ - коэффициент учитывающий региональные территории О¨=4 (промзона)

g - удельный ущерб от выбросов вредных веществ g= 10,33 руб/т

f - коэффициент, учитывающий характер рассеивания вредных веществ в атмосфере;

mi - фактический выброс вредного i-го вещества;

Аi - агрессивность i-го вещества, Аi=1/ПДК

Увозм (хлорбензол) = 10,33*4 (1/0,97) *592,72=25248,63 руб/т

Увозм (общее) = 25248,63 руб/т

Уфактический (хлорбензол) = 25248,63/95=265,7750468 руб/т

Уфактический (общее) = 265,7750468 руб/т

Упредотвращённый=У возм. - У фактич. = 25248,63-265,7750468=24982,86 руб/т

На основании разработанного экологического решения производство модифицированной огнеупорной древесины можно отнести к экологически чистым производствам, поскольку оно удовлетворяет требованиям, предъявляемым к "малоотходным технологиям": применение эффективных методов борьбы с загрязнением окружающей среды (оборотное водоснабжение); снижение энергетических затрат; выпуск продукции высокого качества, соответствующей интересам потребительской сферы.


4. Автоматика Введение

Автоматизация производства является важнейшим фактором ускорения научно-технического прогресса в народном хозяйстве. Системы автоматического управления становится неотъемлемой частью технического оснащения современного производства, обеспечивая повышение качества продукции и улучшение экономических показателей производства за счет выбора и поддержания оптимальных технологических режимов.

При автоматизации химических производств применяются все основные методы и системы, используемые в других областях. Кроме того, ряд специфических, обуславливаемых необходимостью контроля и регламентации физико-химических свойств веществ и условиями проведения химико-технологических процессов: высокими давлениями и температурами, агрессивностью перерабатываемых сред, необходимостью обеспечения безопасности при любых потенциально опасных процессах. Технологический процесс и оборудование, в котором он протекает, представляет собой объект управления, а комплекс технических средств и персонал, непосредственно участвующий в управлении, образует систему управления.

При автоматизации непрерывных технологических процессов большое значение имеет частный случай управления - регулирование. Назначение автоматических систем регулирования (АСР) - поддержание заданных или оптимальных величин, определяющих протекание технологического процесса.

АСР принципиально могут быть осуществлены с помощью достаточно простых технических средств - локальных регуляторов. Однако функциональные возможности таких систем очень ограничены. Автоматизировать более сложные функции управления, такие, например, как оптимизация технологического процесса или принятие решения при допустимых нарушениях в ходе технологического процесса, невозможно без применения средств вычислительной техники и устройств оперативного обмена информацией между производственным персоналом и техническими средствами. В связи с этим для управления стали широко применять автоматические системы управления (АСУ).

АСУ предназначены как для управления технологическими процессами, так и для организационного управления предприятиями. Эти системы могут функционировать без участия человека. АСУ воздействуют на технологические процессы в зависимости от реальных ситуаций.

4.1 Задачи автоматизации

1. Контроль уровня в емкости с водой 1, с пастой ПХДС в ёмкости 2, в реакторе с мешалкой 6.

2. Контроль температуры в термошкафах 11 и 8.

3. Контроль расхода ПХДС и воды из дозирующих емкостей 4 и смесителей 7.

4. Контроль качества смеси в пропиточной ванне 10.

4.2 Техническое оформление

В качестве первичного прибора для измерения температуры выбираем термоэлектрический преобразователь типа ТХК-400У. Принцип действия термоэлектрических преобразователей основан на использовании термоэлектрического эффекта. Термо-эдс, развиваемая термоэлементом температурного преобразователя и соответствую определяемой температуре, измеряется с помощью приборов (устройств) отградуированных в градусах температурной шкалы.


Техническая характеристика термоэлектрических преобразователей

ТХК-400У.

Градуировка ХК

Предел измерения, °С0-600

Максимальное условное давление, МПа2,5

Показатель тепловой инерции, с60

Устойчивость к механическим воздействиям виброустойчивый, ударопрочный

Материал защитной арматуры сталь Х18Н10Т

Длина монтажной части, мм100

Число рабочих концоводин

Защищенность от внешней средыс водозащищенной головкой

Способ крепления скользящий штуцер М22 * 1,5

В качестве первичного прибора для измерения уровня выбираем уровнемер типа РУС. Такие приборы предназначены для контроля уровня диэлектрических и электропроводных жидкостей, в том числе агрессивных и взрывоопасных, и преобразование уровня в унифицированный сигнал 0-5, или 4-20 мА. Принцип действия емкостных уровнемеров основан на измерении емкости измерительного преобразователя (конденсатора), погруженного в контролируемую среду, при изменении уровня последней вдоль оси преобразователя.

Уровнемер состоит из первичного преобразователя и передающего измерительного преобразователя.

 

Техническая характеристика уровнемеров РУС.

Класс точности 1

Предел измерения, м 0-20

Температура измеряемой среды, °С - 60 •* - +250

Давление измеряемой среды, МПа до 10

Вязкость измеряемой среды, Па-с не более 0,1

Диэлектрическая проницаемость измеряемой среды 1,4 и более

Удельная электропроводность среды, См/м не менее 10-4

Агрессивность среды в пределах стойкости стали

ОХ22Н6Т

Питание От сети переменного напря-

жением 220В и частотой 50 Гц

Вероятность безотказной работы за 2000 ч. 0,96

Габаритные размеры передающего преобра- 80 х160 х 470 зователя, мм

Масса первичных преобразователей, кг 3 - 18,5

В качестве первичного прибора ля измерения давления выбираем манометр типа МВП4-1У. Принцип действия приборов с упругими чувствительными элементами (деформационные приборы) основан на использовании деформации или изгибающего момента упругих чувствительных элементов под действием измеряемого давления среды, преобразующих его в пропорциональные перемещения или усилия. Прибор МВП4-1У предназначенный для измерения, сигнализации и двухпозиционного автоматического регулирования.

 

Техническая характеристика манометра МВП4-1У.

Класс точности 1,5

Предел измерения, МПа - 0,1 - * - 0 +• +0,3

Габаритные размеры, мм 0 160 х 131

Масса, кг 4

Температура окружающей среды, °С 0-60

Относительная влажность окружающей среды, % до 80


4.3 Монтаж и оборудование термоэллектрических преобразователей

Термоэлектрические преобразователи в большинстве монтируются с помощью патрубков (бобышек), привариваемых к трубопроводам, резервуарам, емкостям или другому технологическому оборудованию, и штуцеров на защитной арматуре. Места установки патрубков, штуцеров изолируются, если трубопровод или другое оборудование изолированы.

Термоэлектрические преобразователи устанавливаются перпендикулярно потоку или под углом к нему, концом против направления движения. При монтаже преобразователей в трубопроводе его рабочий спай должен находиться на оси потока. На трубопроводах малого диаметра в месте установки преобразователя предусматривается расширение, достаточное для размещения преобразователя. Если преобразователь монтируется на изгибе (колене) трубопровода, его необходимо располагать против движения потока. При установке преобразователей в резервуарах, емкостях, газоходах, камерах технологических агрегатов и т.п. выступающая часть их должна составлять 20-50 мм.

Для уплотнения места ввода преобразователя могут использоваться специальные фланцы с трубой, привариваемой к металлической обшивки оборудования.

Сопротивление электрической изоляции между защитной арматурой термоэлектрического преобразователя и его токоведущей частью (термоэлектродами, компенсационными и соединительными проводами) не должно быть менее 20 МОм. Материал защитной арматуры должен быть коррозионностойким, не влиять на качество измеряемой среды и т.п.

Обслуживание преобразователей заключается в периодической проверке герметичности в месте установки, а также в поверке согласно графикам. Проверка производится "по месту" с помощью переносных контрольных приборов, а также в поверочной лаборатории.


4.4 Монтаж и обслуживание приборов для измерения уровня

При выборе и монтаже различных уровнемеров необходимо учитывать возможность возникновения дополнительных погрешностей измерений за счет волнений на поверхности жидкостей. Место расположения чувствительного элемента прибора выбирают таким образом, чтобы по возможности исключить влияние подобных явлений. При необходимости для предотвращения колебаний жидкостей применяют специальные устройства (карманы, клапаны, гребенки и т.п.).

Все уровнемеры монтируются в строго вертикальном положении, за исключением оговоренных в инструкциях случаях.

Поплавки и другие чувствительные элементы защищают от механических воздействий (удары, сильные вибрации), к ним обеспечивается легкий доступ для осмотра, чистки, мойки и ремонту. При установки уровнемеров вне помещений их защищают от воздействий внешней среды.

Приборы, используемые при измерении уровня легкокристаллизующихся растворов, нуждаются в дополнительном обогреве чувствительного элемента, что осуществляется подводом пара, подводом воды, электрообогревом и т.п.

Дополнительные трудности возникают при монтаже приборов на специальном технологическом оборудовании из алюминия, на эмалированных и железобетонных емкостях и т.п. Желательно уже при проектировании и изготовлении подобного оборудования предусматривать специальные устройства для монтажа чувствительных элементов измерительных преобразователей (патрубки, муфты, кронштейны и т.п.).

Важным условием при монтаже уровнемеров является выполнение требований производственной санитарии: отсутствие труднопромываемых зон, щелей, застойных зон, карманов и т.п.

Материал для изготовления чувствительного элемента прибора подбирают таким образом, чтобы он не реагировал с измеряемой средой.

Все электрические соединения выполняются в строгом соответствии с Правилами устройства электроустановок и требованиями инструкций о монтажу и эксплуатации приборов.

Электрические приборы должны защищаться от влияния сильных магнитных и электрических полей и быть заземлены.

4.5 Монтаж и обслуживание приборов для измерения расхода и количества

Счетчики объемные и скоростные устанавливаются на горизонтальных участках трубопроводов при помощи патрубков с фланцами. Если диаметр трубопровода не равен калибру счетчика, то установка последнего производиться при помощи дополнительных конусных промежуточных переходов. При этом отводящий и подводящий участки трубопровода, где монтируется счетчик, должны находиться на одной оси, я счетчик устанавливается без натягов, сжатий и перекосов.

Обязательным условием при установки скоростных счетчиков является наличия перед ними прямого участка трубопровода длиной 8 - 10 В (где В - диаметр трубопровода). Для остальных типов приборов это требование является желательным, однако невыполнение его снижает точность измерений.

Для очистки измеряемой жидкости от посторонних примесей, особенно от твердых частиц, перед счетчиком устанавливают фильтр. Жесткие требования предъявляются к очистке среды при использовании счетчиков с овальными шестернями, роторных и шариковых, так как попадание твердых частиц в измерительную камеру их может привести к заклиниванию движущих частей измерительного устройства.

При установке счетчиков рекомендуется предусматривать монтаж обводной линии с возможностью их отключения при чистке, мойке, градуировке, ремонте и других работах.

Счетчики устанавливают так, чтобы они всегда были заполнены измеряемой жидкостью, а направление стрелки на кожухе счетчика совпадало с направлением потока жидкости в трубопроводе.

При установке счетчиков или расходомеров вне помещений их защищают от действия солнечной радиации и атмосферных осадков.

Преобразователи расходов индукционных расходомеров могут быть установлены на трубопроводе под любым углом при условии заполнения всего канала преобразователя измеряемой жидкостью. Ротаметры располагают только на вертикальных участках трубопроводов, при этом весь канал должен быть заполнен измеряемой жидкость. Допустимые отклонения ротаметра от вертикальной оси не более 1°.

Нормальная эксплуатация всех приборов возможна лишь при соблюдении следующих условий:

отсутствие значительных пульсаций давления в трубопроводах;

допустимые пределы температуры и давления измеряемой среды;

отсутствие сильных вибраций и ударов;

плавное включение потоков при пуске приборов во избежание динамических ударов потока.

Правильность показаний обеспечивается лишь при условии соответствия плотности и вязкости измеряемой среды градуировочным данным.

В процессе эксплуатации на внутренних частях приборов возможно оседание осадков, поэтому приборы периодически моют, чистят или продувают измерительные камеры.

4.6 Монтаж и обслуживание анализаторов жидкостей

Монтаж анализаторов производиться с учетом всех требований инструкций, основными из которых являются обеспечения надежности крепления и уплотнения чувствительных элементов.

Прокладка электрических линий, как правило, производится в металлических трубах. Максимальное расстояние от чувствительных элементов до измерительных блоков не должно превышать 100 м в случае, если это условие не оговаривалось особо. Не допускаются многократные изгибы при прокладке воздушных трасс. Для обеспечения надежной работы измерительных схем приборы обязательно заземляются медными проводами диаметром 2-3 мм.

При монтаже чувствительных элементов приборов и устройств должно быть обеспечено их хорошее омывание потоком жидкости, а также предусмотрена возможность периодической чистки и мойки. Соединительные трубопроводы от отборного устройства на объекте и обратные сливные линии должны быть как можно короче и достаточного диаметра для хорошей циркуляции среды. На них устанавливаются соответствующие запорные органы.

При соединении чувствительны элементов (электродов) рН-метров с измерительными преобразователями используются коаксиальные кабели. Центральная жила присоединяется к зажиму измерительного электрода, а оплетка - к зажиму вспомогательного электрода.

Особое внимание при установке пробоотборных устройств обращается на выбор места и их конструкцию. Место установки должно обеспечивать представительность анализа, что достигается расположением отборных устройств на прямых участках, хорошо омываемых анализируемой жидкость, отсутствием застойных зон и т.п. Пробоотборные устройства часто изготавливаются в виде щелевых зондов, трубок с многими отверстиями и т.п.

Весьма важно текущее обслуживание измерительных приборов, которое заключается в ежедневном осмотре всех элементов и узлов. Особенно это относится к таким устройствам, как рН-метры.

В данном разделе дано обоснование автоматизации технологического процесса получения модифицированной древесины с помощью пасты ПХДС. Предложенная система регулирования позволит повысить эффективность работы, данного технологического процесса, вследствие этого улучшится качество получаемой продукции, а также повысится безопасность производства.

Описание технологического процесса. Из хранилищ - 1,2 паста ПХДС и вода с помощью насосов - 3 перекачиваются в дозирующие ёмкости - 4,5. Через краны - бпаста и вода попадают в перемешивающее устройство - 7. По окончании времени перемешивании смесь веществ с помощью крана - 8 попадает в пропиточную ванну - 9, в которую по ленточному конвейеру - 10 поступает древесина из термообрабатывающей печи - 11. После пропитки древесины в течении 30 минут образцы по ленточному конвейеру поступают в печь для последующей сушки. После этого пропитанные образцы транспортируются на склад.


5. Организационно-экономический раздел Введение

Получаемая модифицированная древесина или древесные опилки представляют собой огнеупорные материалы, получаемые пропиткой древесины продуктом химической переработки сульфированного совтола 10 (паста ПХДС).

Такие материалы целесообразно использовать как в строительных, так и в декоративно-отделочных целях с целью снизить риск и увеличитъ безопасность людей при пожаре, для сохранения материальных ценностей.

Потенциальными потребителями получаемого материала является предприятия мебельной промышленности России. Кроме того, использовать эту древесину могут любые заводы с высокой пожароопастностью.

Конкурирующими предприятиями по России являются Горьковское производственное объединение "Стройдеталь" (г. Горький) и "Ростовский Промстройниипроект" (г. Ростов).

Данный участок по получению модифицированной древесины предлагается размещать на территории Саратовской области.

5.1. Расчет эффективного фонда времени работы оборудования

Таблица 5.1. Расчет эффективного фонда времени работы оборудования

Элементы времени Фонд времени
Дни Часы
Календарный фонд времени 365 2920
Нерабочие дни по режиму: - выходные; - праздничные 104 12 832 96
Планируемые остановки оборудования в рабочее время: - капитальный ремонт; - текущий ремонт 10 6 80 48
Номинальный фонд времени 249 2016
Эффективный фонд времени работы оборудования 239 1912
5.2. Расчет производственной мощности

М = п*В*Тэф,

где п - число оборудования (линия);

В - производительность в сутки; ТЭф - эффективный фонд времени.

М = 1*16,57*239 = 3960 кг/год

5.3. Расчет стоимости оборудования

Расчет стоимости оборудования приведен в табл.5.2.

Таблица 5.2. Расчет стоимости оборудования

Наименование оборудования Цена единицы оборудо-вания, руб. Затраты на доставку и монтаж Сметочная стоимость, руб Коли-чество обору-дования Суммарная стоимость оборудования, руб. Амортиза-ционные отчисления
% руб. % руб.
1. Смеситель 11520 15 1728 13248 3 39744 10 3974,4

2. Емкость (3 м3)

2400 15 360 2760 2 5520 10 552

З. Емкость (5

м3)

5400 15 810 6210 2 12420 10 1242
4. Пропиточная ванна 8000 15 1200 9200 1 9200 10 920
5. Транспортер 2900 15 435 3335 1 3335 10 333,5
6. Термокамера 13440 15 2016 15456 3 46368 10 4636,8
7. Дозатор 1950 15 292,5 2242,5 11 24667,5 10 2466,7
8. Насос 1400 15 210 1610 2 3220 10 322
ИТОГО: 47010 15 7051,5 54061,5 25 144474,75 10 14447,4

Расчет амортизации: 14447,75/3960 = 3,65 руб.

5.4. Расчет энергетических затрат

Расчет энергетических затрат приведен в табл.5.3

Таблица 5.3. Расчет энергетических затрат

Оборудование

Мощ-

тт/"ч/-*'тчт

единицы оборудо-вания,

кВт/час

Количество оборудова-

ния, шт.

Суммарная мощность оборудования, кВт/час Сумма, руб. Годовые затраты, руб.
Смеситель 7,5 3 22,5 15,75
Термокамера 4,9 3 14,7 10,29
Дозатор 1,5 11 16,5 11,55 78430,24
Транспортер 1,5 1 1,5 1,05
Насос 1,7 2 3,4 2,38
ИТОГО: 58,6 41,02

Общегодовые затраты на электроэнергию:

Эобщ. = N * Эквт * Тэф. * 8, где,

N - общая мощность оборудования, кВт;

ЭкВт - стоимость 1 кВт/час;

Тэф. - эффективный фонд времени, час. = 58,6*0,7*239*8 = 78430,24 руб.

На 1 кг продукции: 78430,24/3960 = 19,8 руб.


5.5. Расчет стоимости материалов

Исходным сырьем для получения модифицированной древесины являются:

Древесина или древесные опилки;

ПХДС;

Вода;

Модифицирующие добавки.

Расчет стоимости материалов приведен в табл. 5.4.

Таблица 5.4. Расчет стоимости материалов

Наименование сырья и материалов Норма расхода сырья на 1 кг продукта Цена материала за 1 кг продукта, руб. Стоимость, руб.
Вода (дистил) 0,2 20 4
Древесина 0,7 60 42
ПХДС 0,3 80 24
Модифицирующие добавки 0,03 18,6 0,56
ИТОГО: 70,56
5.6. Расчет заработной платы

На данном участке задействовано 3 человека: технолог, аппаратчик, лаборант.

Расчет заработной платы приведен в табл. 5.5.

Таблица 5.5. Расчет заработной платы

Рабочие Численность Основная з/п, руб. /год

Дополнительная (10%) з/п,

 руб. /год

1. Технолог 1 33600 3360
2. Аппаратчик 1 42000 4200
3. Лаборант 1 10800 1080
ИТОГО: 86400 8640
  5.7 Общепроизводственные расходы

Общепроизводственные расходы предназначены для обобщения информации о расходах по обслуживанию основного и вспомогательного производств предприятия, т.е.

• расходы по содержанию и эксплуатации машин и оборудования;

• амортизационные отчисления на полное восстановление и затраты на ремонт основных средств производственного назначения;

• расходы по страхованию производственного имущества;

• расходы на отопление, освещение и содержание производственных помещений;

• арендная плата за производственные помещения, машины и оборудование, другие арендуемые средства, используемые в производстве;

• оплата труда производственного персонала, занятого обслуживани-6м производства;

• другие аналогичные по назначению расходы.

Расчет общепроизводственных расходов рекомендуется вести по следующей формуле:

[50% (осн. з/п + доп. з/п)] /3960 = (0,5*95040) 73960 = 12 руб.

5.8 Общехозяйственные расходы

Общехозяйственные расходы предназначены для учета административно - управленческих и хозяйственных расходов, не связанных непосредственно с производственным процессом, т.е.

• административно - управленческие расходы;

• содержание общехозяйственного персонала, не связанного с производственным процессом;

• амортизационные отчисления на полное восстановление и расходы на ремонт основных средств управленческого и общехозяйственного назначения;

• арендная плата за помещения общехозяйственного назначения;

• расходы по оплате информационных, аудиторских и консультационных услуг;

• другие аналогичные расходы по назначению расходы. Расчет общехозяйственных расходов ведется по формуле:

[150% (осн. + доп. з/п)] /3960 = (1,5*95040) /3960 = 36 руб.

5.9 Расчет производственной себестоимости 1 кг модифицированной древесины или опилок

Себестоимость как экономическая категория тесно связана со стоимостью. Себестоимость - это часть стоимости. Она выражает в денежной форме стоимость потребленных средств производства и большую часть стоимости продукта, созданного трудом для себя, предназначаемую для выплаты заработной платы работникам предприятия. Как показатель себестоимость отражает текущие затраты предприятия в стоимостном выражении на производство и сбыт продукции.

Расчет себестоимости представлен в табл.5.6.

Таблица 5.6. Производственная себестоимость 1 кг. Модифицированной древесины

Статьи затрат Сумма, руб
1. Сырье и основные материалы 70,56
2. Затраты на энергию 19,8
3. Амортизационные отчисления 3,65
4. Основная з/п производственных ра-бочих 21,82
5. Дополнительная з/п 2,18
6. Общехозяйственные расходы 36
7. Общепроизводственные расходы 12
8. ИТОГО (полная себестоимость): 166,01
5.10 Расчет оптовой и отпускной цены продукта

Оптовая цена - это цена, по которой оптовые фирмы продают товар крупными оптовыми партиями розничным компаниям. Эта цена складывается из цен производителя плюс все производственные и маркетинговые расходы оптовика и его прибыль.

Оптовая цена рассчитывается по формуле: производственная себестоимость + 15% прибыль;

Оптовая цена: 166,01 + 15% = 190,91 руб.

Отпускная цена равна произведению оптовой цены на 20% (НДС);

 

Отпускная цена: 190,91*1,2% (НДС) = 229,09 руб.

5.11 Расчет ожидаемой прибыли

Прибыль равна разности между отпускной и оптовой ценой, умноженной на годовой выпуск продукции, т.е.

 

Прибыль = (229,09 - 190,91) *3960 = 151192,8 руб. /год

5.12 Расчет рентабелъности

Рентабельность - это прибыль на каждый вложенный рубль. Рентабельность рассчитаем по формуле:

Рентабельность = [Прибыль/ (Полн. Себестоимость* годовой выпуск продукции)] *100% = [151207,85/ (166,01*3960)] *100% = 23%

5.13 Техно-экономические показатели получения модифицированного материала

Расчёт срока окупаемости

Ток = К/П,

где

К - капитальные затраты,

П - прибыль.

Ток = 158922,15/1512,07 = 105 дней.

Таблица 5.7.

Показатели Единицы измерения Значения
1. Производственная мощность, т/год 3960
2. Энергозатраты, Тыс. руб. / год 78,430
3. Амортизационные отчисления, Тыс. руб. 144,47
4. Заработная плата, Тыс. руб. / год 95,040
5. Полная себестоимость, руб. /кг 166,01
6. Отпускная цена, руб. 229,09
7. Оптовая цена, руб. 190,91
8. Ожидаемая прибыль, Тыс. руб. / год 1512,07
9. Срок окупаемости Дней 105
10. Рентабельность,% 23 23
Вывод

Вышеизложенные экономические расчеты показали, что внедрение в древесину водного раствора пасты ПХДС экономически целесообразно. Прибыль от реализации синтезируемого материала составляет 151207,85 руб./год; рентабельность 23%.


Заключение

В настоящее время как в промышленности, так и в быту используются изделия из дерева. Древесина используется не только как строительный, но и как декоративно - отделочный материал. Достоинствами древесных материалов и натуральной древесины являются сравнительно высокая прочность при небольшом объемном весе, малая тепло - и звукопроводность, хорошая обрабатываемость и способность соединяться при помощи врубок, шпонок, гвоздей и клеев. Кроме этого древесина - восполняемый природный экологически чистый материал. Однако она обладает и рядом недостатков таких как формоизменяемость при изменении влажности, сгораемость, подверженность при определенных условиях загниванию, анизотропность - как следствие неоднородности строения и др. Одним из наиболее существенных недостатков древесных материалов является повышенные воспламеняемость и горючесть [1,2].

В настоящее время ко всем строительным материалам, в том числе и к древесине, предъявляются высокие требования по пожарной безопасности. Поэтому проблемы повышения долговечности и снижения горючести древесных изделий являются актуальными и требуют незамедлительного решения.

В связи с этим целью данной дипломного проекта являлись, анализ существующих на сегодняшний день исследований в области снижения горючести древесных материалов и разработка огнезащищённой древесины с использованием модифицирующих добавок.

В данной работе разработана технология получения модифицированной древесины пониженной горючести с применением в качестве замедлителя горения продукта переработки трансформаторного масла - пасты ПХДС.

Проведен анализ технической и патентной литературы по современным направлениям проблемы снижения горючести древесных материалов.

Разработаны параметры модификации, обеспечивающие получение древесных материалов с пониженной горючестью. Показатели горючести (кислородный индекс) полученных составов возрастают с 18% об. (для исходной древесины) до 37% - 42% об., что позволяет отнести образцы к трудногорючим материалам.

Изучено влияние толщины образцов на сорбцию ЗГ (пасты ПХДС) и показано, что с уменьшением толщины образца количество сорбированного ЗГ увеличивается.

Определено влияние ЗГ на процесс пиролиза древесины. Пиролиз проходит по механизму дегидратации, что подтверждается повышенным выходом карбонизованного остатка, снижением начальной температуры процесса и сужением температурного интервала пиролиза.

Предложена технологическая схема получения огнезащищенной древесины. Предусмотрены мероприятия по безопасному ведению процесса и дана экологическая и экономическая оценка рассматриваемой технологии.

В результате проведённой работы разработана технология получения модифицированной древесины пониженной горючести с применением в качестве замедлителя горения пасты ПХДС. Разработаны параметры модификации, обеспечивающие получение древесных материалов с пониженной горючестью. Изучена возможность применения для огнезащиты метилакрилатных соединений, а также исследована возможность получения древесно-стружечных плит пониженной горючести.


Список использованной литературы

1. Асеева Р.М. Горение полимерных материалов / Р.М. Асеева, Г.Е. Заиков. - М.: Наука, 1981. - 280с.

2. Целлюлоза и ее производные: в 2 - х т. Т.2 / под ред. Н. Байклза, Л. Сегала; пер. с англ. З.А. Роговина. - М.: Мир, 1974. - 510с.

3. Копылов В.В. Полимерные материалы с пониженной горючестью/ В.В. Копылов, С.Н. Новиков, Л.А. Оксентьевич / под ред. А.Н. Праведникова. - М.: Химия, 1986. - 224с.

4. Кодолов В.И. Горючесть и огнестойкость полимерных материалов. - М.: Химия, 1976. - 160с.

5. Жбанов Р.Г. Влияние структуры целлюлозных волокон на процесс их термической деструкции / Р.Г. Жбанов, Г.С. Бычкова, А.А. Конкин // Хим. волокна. - 1976. - №1. - С.31 - 33.

6. Шишко А.М. Кинетические закономерности начальной стадии разложения целлюлозы/ А.М. Шишко, А.Г. Песнякович, И.Н. Абрампольски // Р.Ж. Химия. - 1989. - №2. - 12 С.344. - реф. ст.: Весщ АНБССР. Сер. Х1м.Н. - 1989. - №1. - С. ЗО-34.

7. Способ изготовления огнезащитных древесных плит / А.А. Леонович, В.В. Васильев, М.Ю. Демина, С.Н. Вьюнков // Пластмассы. - 1995. - №5. - С.15-18.

8. Леонович А.А. Теория и практика изготовления огнезащитных древесных плит; Изд - во Ленинградского ун-та, 1978, - С.157.

9. И. Йосифов Н., Вълчева Л., Танев С. Съетав за получаване на огнестойчиви плочи от древна чатиц // Дървообрабатвна и мебельна промышлености, 1990, 1, С.28-30.

10. Ю. Воробьев В.А. Строительные материалы / В.А. Воробьев, А.Г. Комар.: Учебник для ВУЗов. Изд - во 2 - е, переработ. и дополн. М.: Стройиздат., 1976, 475 с.11.

11. Комар А.Г. Строительные материалы и изделия. Учебник для инженерно-экономических специальностей строительных ВУЗов. - М.: Высш. шк; 1983. - 487 с., Ил.

12. Полимерные материалы пониженной горючести: Материалы IV Международной конференции/ ВОЛГ ГТУ. - Волгоград, 2000. - 196 с.

13. Полимерные материалы пониженной горючести: Тезисы докладов V Международной конференции/ Волгоград. гос. техн. ун-т. - Волгоград, 2003, 96 с.

14. Лещинер А.У. Последние достижения в области химической модификации целлюлозных волокон / А.У. Лещинер, В.И. Самойлов. - М.: НИИТЭХИМ, 1975. - 706 с.

15. Тюганова М.А. Получение огнезащитных целлюлозных материалов/ М.А. Тюганова, М.А. Копьев, С.А. Кочаров // Хим. Волокна. - 1981. - Т.26. - №4. - с.65 - 67.16. 3аявка 95122480 РФ, МКИ 6 О01Р2/02

16. Способ изготовления огнестойкого целлюлозного волокна/ К.Д. Белл, Я.О. Гравинсон, Т.Д. Оллереншоу // Р.Ж. Химия. - 1999. - №10. - 10Ф 67П.П.

17. Таубкин С.И. Основа огнезащиты целлюлозных материалов. - М.: МКХ РСФСР, 1960. - 347с.18. Особенности термолиза целлюлозы / П.П. Новосельцев, М.А. Тюганова, Г.Е. Кричевский, М.В. Буянова // Хим. Волокна. - 1992. - №3. - с.28 - 30.19. Паулик.Е. Дериватограф Е. Паулик, Ф. Паулик, М. Арнолд. - Будапешт: Изд-во Будапештского политех. ин-та, - 1981. 21с.

18. Пурделла Д. Химия органических соединений фосфора / Д. Пурделла, Р. Вылчану. - М.: Химия, 1972. - 752 с.

19. Полимерные композиционные материалы пониженной горючести / Л.Г. Панова, С.Е. Дотеменко, Н.А. Халтуринский, Ал. Ал. Берлин // Успехи химии. - 1988. - Т.47, Вып.7. - с.1191 - 1198.22.

20. Влияние некоторых факторов на процесс термической деструкции целлюлозы / И.Л. Эвентова, А.П. Руденко, И.И. Кулакова, М.М. Канович // Хим. Волокна. - 1974, - №4. - с.29 - 31

21. Роговин 3.А. Химия целлюлозы. - М.: Химия, 1972. - 520 с.

23. Модорский С.Л. Термическое разложение органических полимеров. - М.: Мир, 1967,-432с.

24. Роговин З.А. Химическое превращение и модификация целлюлозы/ З.А. Роговин, Л.С. Гальбрайх. - 2-е изд., перераб. и доп. - М.: Химия, 1979. - 205с.

25. Жубанов Б.А. Эфиры кислот фосфора в качестве огнестойких добавок для полимеров/ Б.А. Жубанов, Г.А. Дьячков, Г.Н. Джилжбаева // Изв. АН. КССР. - 1989. - Т.66. - с.170 - 185.

26. Роне Б.А. Особенности механизма термораспада целлюлозы в присутствии фосфорной кислоты // I Международная конференция по полимерным материалам пониженной горючести: Тез. докл. В 2 - х т. Т.1, Алма-Ата, 25 - 27 сент. 1990 г., Алма-Ата: ОИХФ АНСССР - с.172 - 175.

27. Химическая энциклопедия: Изд - во советская энциклопедия, Т.2, М.: 1990.

28. Бусыгин А.В. Предпринимательство. Учебник. - М.: "Дело", 1999. - 640 с.

29. Валдайцев С.В. Управление инновационным бизнесом. Учебное пособие, для ВУЗов. - М: ЮНИТИ-ДАНА, 2001. - 343с.

30. Черняк В.З. Бизнес-планирование: Учебник для ВУЗов. - М.: ЮНИТИ - ДАНА, 2002. - 479с.

31. Бринк И.Ю., Савельева Н.А. Бизнес-план предприятия, теория и практика. - М.: финансы и статистика, 2002. - 384с.

32. Бизнес-планирование: учебник / Под ред. В.М. Попова, С.И. Лякунова. - М.: Финансы и статистика, 2000. - 672с.

33. Экономика. Учебник, под ред.А.И. Архипова, А.Н. Нестеренко, А.К. Большакова. М.: "Проспект", 1998. - 785с.

34. Землянухина С.Г. Экономика. Учебник. - Саратовский государственный технический университет, 2000г. - 669с.

35. Джозеф А. Ковелло, Бридан Дж. Хейзелгрен. Бизнес-планы, полное справочное руководство. Перевод с англ., М.: - Изд. "Бином". 1997. - 352с.

36. Сергеев А.А. Экономические основы бизнес-планирования. Учебное пособие для ВУЗов. - М.: ЮНИТИ-ДАНА, 1999. - 303с.

37. Уткин Э.А. Бизнес-план. Организация и планирование предпринимательской деятельности. - М.: Ассоциация авторов и издателей "Тандем". Изд. "ЭКМОС", 1997. - 96с.

38. Сборник бизнес-планов с комментариями и рекомендациями. Под ред. В.М. Попова. - 2-е изд. переработанное и дополненное. - М.: финансы и статистика, 1998. - 488с.

39. Михнюк Т.Ф. Безопасность жизнедеятельности. - Мн.: Дизайн ПРО, 2004. - 240с.

40. Пряников В.И. Техника безопасности в химической промышленности. М.: Химия, 1989. - 288с.

41. Правила устройства элекроустановок (Минэнерго) СССР-6-е изд. М-.: Энергоатомиздат, 1987: 648с.

42. Охрана труда в химической промышленности/ под рёд. Макарова. - М.: Химия, 1989. - 496с.

43. Белов С.В. Безопасность жизнедеятельности: Учебник для студентов ВУЗов. - Высшая школа, 2005. - 606с.

44. Шефтель В.О. Вредные вещества в химической промышленности. - М.: Химия, 1991. - 544с.

45. Естественное и искусственное освещение. СниП 23-05-95. Минстрой России, М.: 1996. - 36с.

46. Пожароопасность веществ и материалов и средства их тушения: спра-вочное пособие по технике безопасности. - М.: Химия, 1990

47. Бобков А.С., Блинов А.А., Охрана труда при переработке полимерных материалов: Учеб. Для вузов. - М.: химия, 1986. - 272с.

48. Кораблёв В.П. Электробезопасность на предприятиях химической промышленности: Справ. Изд. - М.: Химия, 1991. - 240с.: ил.

49. Киселев В.Н. Основы экологии. - Ростов-на-Дону: Феникс, 2000-383с.

50. Шефтель В.О. Вредные вещества в химической промышленности. - М.: Химия, 1991. - 544с.

51. Чаусов Ф.Ф. Эффективные средства очистки воздуха/ Ф.Ф. Чаусов, А.П. Раевская, Ю.Н. Германов // Экология и промышленность России. - 2001. - №7. - с.4-7.

52. Сборник руководящих документов и нормативных актов в сфере обращения с отходами. Саратов. Комитет охраны ОС. 19964.

53. Гляденцев С.Н. Очистка производственных сточных вод / С.Н. Глянцев, С.С. Прокуева // Экология и промышленность России. - 2001. - №8. - с.7-9.

54. Гляндцев С.Н. Фильтровальные материалы. Практика применения/С.Н. Гляндцев, С.С. Прокуева // Экология и промышленность России. - 2002. - №11. - с.35-38

55. Гигиеническое заключение на продукцию №77.01.06.260. т.01743.01.0 от27.01.00.

56. Мазур И.И., Молдаванов О.И., Шишов В.Н. Инженерная экология. Общий курс. Т.2. Справочное пособие / под ред. И. И. Мазура. - М.: Высш. шк., 1996. - 655с.: ил.


Информация о работе «Модифицирующее вещество для пропитки древесины, придающее огнестойкость композиции»
Раздел: Промышленность, производство
Количество знаков с пробелами: 119231
Количество таблиц: 26
Количество изображений: 2

Похожие работы

Скачать
121255
0
0

варов. В виде пленки его широко используют для упаковки различных товаров, в сельском хозяйстве и строительстве. Приборы для окон и дверей. Приборы для окон и дверей по назначению подразделяют на приборы установочные, запорные и замки. Каждый вид приборов и приспособлений подразделяют по материалу, назначению, способу изготовления, способу крепления, конструкции, наличию дополнительных ...

Скачать
128585
25
8

... . В связи с вышеизложенным, цель данной работы заключается в исследовании свойств соосажденных манганат (IV) силикатов кальция, а также поиск оптимального содержания пигмента в покрытиях на основе алкидного лака ПФ-060 и грунтовочных композиций на его основе. 3 Объекты и методы исследования В работе использовали соосажденный манганат (IV) силикат кальция в соотношении 10% Na2SiO3. 3.1 ...

Скачать
156088
5
4

... , водостойкость удовлетворительная. Более теплостоек клей ВС-10Т, который отличается высокими характеристиками длительной прочности, выносливости и термостабильности при склеивании металлов и теплостойких неметаллических материалов. Фенолокремнийорганические клеи содержат в качестве наполнителей асбест, алюминиевый порошок и др. Клеи являются термостойкими, они устойчивы к воде и тропическому ...

0 комментариев


Наверх