7. Конструкция и особенности эксплуатации винтовых забойных

двигателей

Начиная с 1940-х годов в СССР помимо ротора основным техническим средством для бурения нефтяных и газовых скважин являлся многоступенчатый турбобур.

Благодаря широкому распространению турбинного способа бурения ускоренно разбуривались нефтегазоносные площади Урало-Поволжья и Западной Сибири, были получены высокие темпы роста добычи нефти и газа.

Однако с увеличением средних глубин скважин и по мере совершенствования породоразрушающего инструмента и технологии роторного способа бурения, в отечественной нефтяной промышленности с каждым годом росла тенденция Отставания технико-экономических показателей бурения.

Несмотря на определенное совершенствование техники и технологии турбинного бурения, показатели работы долот на протяжении ряда лет улучшались весьма незначительно. Хотя в 1970-е годы началось разбуривание месторождений Западной Сибири, отличающихся благоприятными геологическими условиями (мягкие породы, относительно неглубокие скважины), средняя проходка за рейс по эксплуатационному бурению была в 3 — 4 раза меньше аналогичного показателя в нефтяной промышленности США. Так, в 1981 — 1982 гг. средняя проходка за долбление в США составила 350 м, в то время как в СССР этот показатель не превышал 90 м.

Перед специалистами и организаторами бурения в нашей стране встал вопрос о создании погружной техники для низкооборотного бурения, так как, несмотря на определенные успехи роторного бурения глубоких скважин в ряде районов (Северный Кавказ, Западная Украина и др.), технически, экономически и психологически нефтяная промышленность не была готова к развитию роторного бурения. За многие годы государственной поддержки турбинного бурения техника роторного бурения существенно отстала от мирового уровня, не имелось бурильных труб и буровых установок высокого технического уровня.

Таким образом, определился доминирующий способ бурения на базе низкооборотных забойных двигателей.

Решение проблемы создания забойного гидравлического двигателя с характеристиками, отвечающими требованиям новых конструкций долот, было найдено в переходе от динамических машин, какими являются турбобуры, к объемным.

Первым работоспособным, нашедшим промышленное применение оказался гидродвигатель, представляющий собой обращенный насос Муано, относящийся к планетарно-роторному типу гидромашин.

Работы по созданию опытных образцов винтовых забойных двигателей (ВЗД) начались в США и СССР в середине 1960-х годов.

Американские специалисты фирмы разработали ВЗД (на Западе их называют РДМ) для наклонно направленного бурения как альтернативу турбобурам, а в нашей стране, родине турбинного бурения, — как техническое средство для привода низкооборотных долот.

Многолетние поисковые научно-исследовательские работы во ВНИИБТ по совершенствованию забойных гидравлических двигателей привели в 1966 г. к появлению предложенного М.Т. Гусманом, С.С. Никомаровым, Н.Д. Деркачем, Ю.В. Захаровым и В.Н. Меньшениным нового типа ВЗД, рабочие органы которого впервые в мировой практике выполнены на базе многозаходного винтового героторного механизма, выполняющего функцию планетарного редуктора.

В последующие годы во ВНИИБТ и его Пермском филиале Д.Ф. Балденко, Ю.В. Вадецким, М.Т. Гусманом, Ю.В. Захаровым, А.М. Кочневым, С.С. Никомаровым и другими исследователями были созданы основы теории рабочего процесса, конструирования и технологии изготовления, разработана технология бурения винтовыми двигателями.

В результате многолетнего опыта бурения с использованием гидравлических забойных двигателей (турбобуров и ВЗД) сложился комплекс технических требований к современному забойному двигателю.

1. Характеристики двигателя должны иметь высокий уровень крутящего момента (3 кН-м и более) для долот диаметрами 215 — 243 мм; частоту вращения выходного вала в диапазоне 100 — 200 мин для шарошечных долот и 500 — 800 мин для алмазных долот; высокий КПД двигателя для эффективного использования гидравлической мощности насосов; пропорциональную зависимость между расходом бурового раствора и частотой вращения, а также между крутящим моментом и перепадом давления в целях эффективного управления режимом бурения.

2. Рабочие элементы и другие узлы двигателя должны быть выполнены в износо- и термостойком исполнении, обеспечивающем использование бурового раствора любой плотности и вязкости, в том числе с содержанием тампонирующих материалов.

8. Причины возникновения аварий при различных способах бурения

Аварии в скважине происходят из-за нарушения её нормального состояния или работоспособности находящегося в ней бурового инструмента. Аварии приводят к временному прекращению процесса бурения, а в ряде случаев, к непредусмотренному закрытию скважины. На ликвидацию аварий затрачивается много времени и средств, что в конечном счёте повышает стоимость буровых работ. При ликвидации аварий возникают дополнительные повышенные нагрузки на буровое оборудование, сооружения и инструмент, что отрицательно сказывается на их надёжности и снижает безопасность проведения работ. Поэтому необходимо принимать все меры по предупреждению аварий.

Наиболее распространенные виды аварий, которые происходят в скважине с основным буровым инструментом, приведены в табл. 1

Таблица 1

Классификация аварий

По причинам аварии можно подразделить на пять видов:

а) по вине бурового персонала;

б) вследствие геологических осложнений;

в) по техническим причинам;

г) в результате несоблюдения рациональной технологии сооружения скважин;

д) из-за нерациональной организации работ.

Выполнение буровой бригадой всех организационно-технических мероприятий по предотвращению аварий в скважине является обязательным условием ведения буровых работ. Однако нередко причиной происшедших аварий являются действия членов буровой бригады, небрежно или неграмотно выполняющих требования эксплуатации оборудования, инструмента и КИП.

Встречающиеся при бурении скважин геологические осложнения часто являются причиной аварий. К их числу относятся выбросы воды и газа, сильное естественное искривление скважины, катастрофическое поглощение промывочной жидкости, встреча зон с карстовыми пустотами и большими кавернами и др.

Например, резкое искривление скважины способствует образованию желобов в её стволе, что приводит к затяжке в них бурового снаряда, являющейся одной из разновидностей аварий. В то же время, работая в такой скважине, бурильные трубы испытывают высокие напряжения, происходит их более интенсивный износ, что значительно повышает возможность аварии.

Технические причины аварий связаны с физико-механическими свойствами бурового инструмента, качеством его изготовления, возможностями оборудования и т. п.

Несоблюдение рациональной технологии сооружения скважин -причина наиболее часто встречающихся аварий. Так, при бурении глубоких скважин алмазными коронками, из-за низкого качества резьбовых соединений и недостаточной затяжки их утечки промывочной жидкости могут достигать 20-30 л/мин.

Вследствие этого количество фактически поступающей на забой промывочной жидкости оказывается недостаточным для эффективного охлаждения алмазной коронки, что является главной причиной прижога породоразрушающего инструмента.

Низкая организация ведения буровых работ также способствует повышению аварийности, а иногда является прямой причиной происходящих аварий. Так, несвоевременная замена отработанного глинистого раствора, который уже не может выполнять своих функций, может привести, например, к накоплению большого количества шлама и при определенных условиях (внезапная остановка насоса и др.) явиться причиной прихвата бурового снаряда.

Соблюдение рациональной технологии сооружения скважин, правильная эксплуатация технических средств, выполнение требований техники безопасности являются главными условиями снижения количества аварий на буровых работах.

9. Приспособления, применяемые при ликвидации аварий

Для ликвидации различного вида аварий в буровых скважинах применяется специальный аварийный инструмент.

Наиболее распространенным типом ловильного инструмента является метчик.

Метчик при ликвидации аварий (например, обрыв бурильной колонны) опускают в скважину на колонне бурильных труб для соединения с оставшимся там инструментом. Конусную часть метчика ввинчивают в проходное отверстие трубы или соединительного элемента, находящегося в скважине, и производят его извлечение на поверхность.

Для подачи промывочной жидкости в теле метчика предусмотрен осевой канал.

Для этой же цели предназначен колокол. Отличие заключается в том, что его соединяют с извлекаемым инструментом, навинчивая на наружную поверхность бурильных труб или соединений.

Метчики давильные изготавливаются пяти типов от А до Д с правой и левой резьбой. Метчики типов А, Б, Г, Д аналогичны по конструкции. Метчик типа В имеет направленную воронку. Материал метчиков - сталь 12ХН2, а патрубки и воронки к ним изготавливаются из стали марок: Ст.5, Ст.6, 20, 35 и 45.

Конусная часть метчика с ловильной резьбой подвергается цементации на глубину 0,4 - 0,7 мм с последующими закалкой и отпуском. Твердость термически обработанной поверхности должна быть в пределах HRC 58-64.

10. Режимы бурения нефтяных и газовых скважин

Углубление (механическое бурение) — это результат разрушения горных пород долотом, вращающимся с определенной скоростью, находящимся под некоторой нагрузкой при постоянном очищении забоя скважины от выбуренной породы буровым раствором определенного качества и движущимся с некоторой заданной скоростью.

Об эффективности бурения обычно судят по скорости проходки скважины и стоимости 1 м проходки. Для оценки отдельных видов работы, связанных с проходкой скважины, введены понятия механической, рейсовой, технической, коммерческой и полной скоростей бурения. Далее показана взаимная связь между этими скоростями.

Примем следующие обозначения:

vср — средняя механическая скорость бурения, м/ч;

vр — рейсовая скорость бурения, м/ч;

vт — техническая скорость бурения, м/ч или м/ст.-мес;

vк — коммерческая скорость бурения, м/ст.-мес;

vп— полная скорость бурения, м/ст.-мес;

t6 — продолжительность бурения скважины, включая время на проработку и расширение скважины tп, ч;

tсп — продолжительность спускоподъемных работ, связанных с заменой долот, включая время на наращивание инструмента, ч;

tосн продолжительность всех производительных работ, кроме предусмотренных 1б и гсп, ч;

tн — продолжительность непроизводительного времени (остановки, ликвидация аварий и т.д.), ч;

tв — продолжительность строительства вышки и монтажных работ, ч;

L — глубина скважины, м.

Тогда

;

;

;

;

;

где с — переводный коэффициент времени (с часов в месяцы). Указанные соотношения можно представить несколько иначе:

;

;

;

.

Из приведенных формул очевидно, что vр, vт и vк зависят от vср и, кроме того, из перечисленных скоростей каждая последующая зависит от предыдущей.

С ростом vср соответственно увеличиваются vр и vk, что согласуется с выводами, вытекающими из формул.

В результате многочисленных исследований установлено, что значения vср, vр, vТ и vk уменьшаются с увеличением глубины L скважины, а стоимость 1 м проходки возрастает. Это справедливо для всех способов бурения.

Стоимость 1 м проходки при всех способах бурения является возрастающей функцией глубины скважины.

С ростом ук, как правило, резко уменьшается удельный расход электроэнергии в бурении и снижается расход материалов, используемых при бурении. Представляют интерес выявление факторов, влияющих на скорость бурения; установление влияния каждого фактора в отдельности и в совокупности; установление природы падения скорости бурения в связи с углублением скважины; изыскание путей уменьшения темпа снижения скорости бурения в связи с ростом глубины скважины.

На темп углубления скважины решающее влияние оказывают три группы факторов (по В.С. Федорову):

1) природные факторы (механические свойства пород, условия их залегания, природа вещества, заполняющего поровые пространства и др.);

2) технико-технологические факторы (способ разрушения породы, конструктивные особенности и долговечность разрушающих инструментов, метод удаления с забоя скважины выбуренной породы, совершенство и мощность бурового оборудования и т.д.);

3) квалификация работников буровой бригады; организация работ в смене, сработанность рабочих в смене и т.п.

11. Геолого-технический наряд. Его назначение

Геолого-технический наряд (ГТН) составляют на основании:

- имеющейся геологической информации о районе сооружения

скважин;

- разработанной проектной конструкции скважины;

- выбранного бурового оборудования, инструмента и контрольно-измерительных приборов;

- разработанной технологии бурения;

- намеченных геофизических, гидрогеологических и др. исследований в скважине;

- определения необходимых специальных работ в скважине. Геолого-технический наряд необходимо иметь на каждой буровой, а его параметры должны выполняться членами рабочей бригады.

ГТН разрабатывается геологом и инженером по бурению производственной организации и утверждается главным инженером. В ГТН должны быть внесены проектные и фактические данные по всем графам наряда. Заполняет наряд машинист буровой установки и геолог после каждого рейса в процессе бурения скважины.

По форме геолого-технические наряды могут иметь небольшие отличия и даже названия, однако их основное содержание остаётся одинаковым.


12. Буровой (вахтенный) журнал

Кроме ГТН при сооружении скважины ведётся буровой журнал. Буровой журнал заполняется в каждую смену, где фиксируются все проведённые работы, их продолжительность, замечания и рекомендации машиниста буровой установки и другие сведения. Наличие в ГТН и буровом журнале точных сведений позволяет правильно задавать величины параметров технологического режима бурения, обеспечивать безаварийную работу оборудования и сооружение скважины, контролировать выполнение всех указаний технического руководителя.


Информация о работе «Назначение и классификация буровых вышек»
Раздел: Промышленность, производство
Количество знаков с пробелами: 37310
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
27733
14
1

... условиях (от пустыни в Северной Африке до ледяных полей Сибири и Исландии) и полностью отвечала этим требованиям. Гидравлическая система полностью управляет всеми составными частями буровой установки на платформе трейлера и не требует демонтажа для перемещения. Гидравлическая система может работать на дизельном топливе или от электрической подстанции, установленной на трейлере и содержащейся в ...

Скачать
27872
0
0

... бурение и другие работы по строительству скважин. Простои могут быть связаны с технологически необходимыми перерывами, режимом работы бурового предприятия (например, перерывы из-за односменности в вышкостроении), а также с недостатками в организации производства, в материально-техническом снабжении и т. п. Сокращение цикла строительства скважин обеспечивает их ускоренный ввод в эксплуатацию, что ...

Скачать
97347
0
0

... устья и дна моря вокруг консервируемой скважины с целью обнаружения навигаци-онных опасностей и составить акт водолазного осмотра устья сква-жины, после чего снять буровую установку с точки бурения. При временной консервации скважины, в открытом стволе ко-торой отсутствуют газонефтеводонасыщенные объекты, необходимо: -- заполнить интервал открытого ствола скважины КСЖ, па-раметры которой ...

Скачать
56686
1
0

... сверх норм убыли); ·  расходы по перевозкам нефтепродуктов, на которые установлены цены франко-станция назначения (железнодорожный, водный и другой тариф, расходы по перекачке нефтепродуктов). Снижение издержек производства - одна из основных качественных характеристик работы системы транспорта и хранения нефти и газа. Важнейший резерв их снижения - экономия всех видов материально-технических и ...

0 комментариев


Наверх