Оптимизация режимов резания на фрезерном станке

4192
знака
4
таблицы
9
изображений

Тольяттинский Государственный Университет

Кафедра “Технология машиностроения”

Курсовая работа

по дисциплине

“Математическое моделирование"

Студент: Комарова И.О.

Группа: М-401

Преподаватель: Бобровский А.В.

Тольятти, 2005


Оптимизация режимов резания

Обработка детали ведется на вертикально-фрезерном станке 6Р12 концевой фрезой с цилиндрическим хвостовиком ГОСТ 17025-71.

Диаметр фрезы D = 20 мм; количество зубьев z = 6; материал инструмента Р6М5; период стойкости инструмента [Т] = 80 мин; глубина фрезерования t = 20 мм; ширина фрезерования В = 20 мм; рабочий ход Lрх = 70 мм; материал заготовки ШХ15; длина заготовки L = 60 мм; шероховатость поверхности Ra 6,3; частота вращения шпинделя станка n = 31,5…1600 об/мин; скорость продольных подач Sпр = 25…1250 мм/мин; мощность электродвигателя Nэ = 7,5 кВт.

Необходимо оптимизировать процесс резания с учетом следующих ограничений:

1) ограничение по кинематике станка;

2) ограничение по периоду стойкости инструмента;

3) ограничение по мощности привода главного движения станка.

Эскиз обработки:


1. Графический метод

1) ограничение по кинематике станка

а)

; ;

; ;

 

б)

; ;

;

2) ограничение по периоду стойкости инструмента

;

;

;

;

;

;

; .

3) ограничение по мощности главного движения станка

;  

;

;

;

; ; ;

Выпишем все ограничения, а затем внесем их на один график.

Критерий оптимальности - целевая функция:

Придаем любое значение z и строим две прямые, касающиеся области оптимальных режимов резания в двух крайних ее точках. Таким образом, мы нашли точки А и В.

Найдем координаты точки А. Для этого необходимо решить систему уравнений:

;

;

Подставим координаты точки А в уравнение целевой функции:

Найдем координаты точки В. Для этого необходимо решить систему уравнений:

;

;

Подставим координаты точки В в уравнение целевой функции:

Сравним значения целевой функции для точек А и В:

Значит, оптимальной точкой резания является точка А (0,296; - 0,494).

Определим оптимальные значения режимов резания:

V = 10x1 = 100,296 = 1,977 м/мин;

Sz = 10x2 = 10-0,494 = 0,321 мм/зуб;

 об/мин;

 мм/мин.


Информация о работе «Оптимизация режимов резания на фрезерном станке»
Раздел: Промышленность, производство
Количество знаков с пробелами: 4192
Количество таблиц: 4
Количество изображений: 9

Похожие работы

Скачать
39025
6
9

... 500 - 100 0,2 шлифовальная Шлифовать пов. 6 Круг СМ1 0,4 - - 300 6,0 14 24 1,6 Шлифовать торец 14 Круг СМ1 0,4 - - 300 6,0 18 109 1,6 В данной работе предлагается разработка автоматической линии для осуществления той части техпроцесса, которая связана с обработкой отверстий и фрезерованием канавок. Таким образом, для данной линии не учитываются токарные и шлифовальные ...

Скачать
19840
0
6

... устройства можно быстро открыть и закрыть зону резания, пользуясь рукояткой 5. Рассеиванию стружки вдоль стола препятствуют боковые неподвижные щиты 2. Рис. 5. Ограждение зоны резания вертикально-фрезерного станка   4. Ограждения и защитные устройства Все вращающиеся части оборудования должны быть закрыты глухими кожухами, плотно прикрепленными к раме или другой части стенда. Кожухи на ...

Скачать
43859
4
8

... колесо-рейка). Приводы должны обеспечивать широкий диапазон режимов обработки, максимальную производительность, высокую точность позиционирования исполнительных органов. Анализируя существующую гамму вертикально фрезерных станков, приходим к выводу, что целесообразно применить традиционную схему цепи подач со ступенчатым регулированием режимов обработки. Вращение от электродвигателя передаётся ...

Скачать
27550
24
1

... зданий и сооружений + текущий ремонт и содержание оборудования: 20293,65 грн. + 48412,7 грн. = 68706,35 грн.     3.  Расчет экономической эффективности технического решения   Техническое решение курсовой работы – замена в токарных станках системы управления на: а) ТП-Д и б) ТПЧ. В результате этого решения норма, зона обслуживания этих станков не изменяется, по этому штат рабочих не меняется ...

0 комментариев


Наверх