2.4 Проблемы и способы переработки отработанных ванадиевых катализаторов сернокислотного производства

Ванадиевые катализаторы (ВК) применяются в производстве серной кислоты с 1937 г. Количество их на каждом предприятии определяется производительностью, т. е. на 1 т суточного выпуска кислоты необходимо иметь в контактном аппарате 100 кг катализатора, содержащего 10 % v2 о5 [1].

Разнообразие сырья и усовершенствования технологии производства кислоты и ВК обусловили использование различных типов ВК [2].

Барий-алюминий-ванадиевый катализатор (БАВ) соответствует формуле nV2 O5 · 12SiO2 · 0,5Al2O3 · 2K2O · 3BaO · mKCl и содержит, мас. доля, %: 8V2O5; 11K2O; 35SiO2; 28ВаО; 4Аl2O3·5Сl и 8 прочих соединений.

Сульфованадат-диатомитовая контактная масса (СВД) содержит, мас. доля, %: 6—7 V2O5; 9—10 K2O; 56—62 SiO2; 2—3 CaO; не более 5(А12Оз+ Fе2О3); 18—19 % — сульфаты (в пересчете на SO3).

Сульфованадат на силикагеле (СВС) содержит, мас. доля, %: 8 V2O5; 12K2O; 55—60 SiO2; менее 3А12О3; 10-15— сульфаты (в пересчете на SO3).

Катализаторы ИК 1—6 (Институт катализа) содержат, мас. доля, %: 9V2O5; 30K2SO4; 55-60 SiO2.

Катализатор кипящего слоя (КС) содержит, мас. доля, %: 7V2O5; 7K2O; 4-6 Al2O3; 55-60 SiO2; 16% — сульфаты (в пересчете на SO3). В процессе работы он истирается и уносится в виде пыли.

Срок службы катализаторов составляет 1—2 года на верхних полках контактного аппарата и 4—5 лет — на нижних слоях. Снижение каталитической активности происходит вследствие перехода значительной части ванадия в четырехвалентное состояние и изменения пористой структуры носителя при нарушении теплового режима работы ВК, а также в результате накопления контактных ядов — мышьяка, сульфата железа (II), тумана серной кислоты, потери части ванадия в виде летучих соединений, образующихся с некоторыми компонентами газа при некачественной газоочистке.

Отработанные ванадиевые катализаторы (ОВК) содержат хорошо растворимые высокотоксичные соединения ванадия, серной кислоты, мышьяка, и поэтому их необходимо захоранивать в герметичных могильниках. Состав ОВК зависит от многих факторов типа использованного катализатора, состава перерабатываемого сырья, качества газоочистки, места и длительности пребывания в контактном аппарате, длительности и условий хранения после выгрузки из контактного аппарата. Высокая ценность основных компонентов ОВК бесспорна, а утилизация целесообразна. Отсутствие переработки ОВК наносит большой экологический вред региону, где их зачастую захоранивают с нарушением правил, а то и просто выбрасывают.

Предложено несколько гидрометаллургических технологий переработки ОВК, часть из которых испытана в полупромышленном масштабе и даже построен цех на Украине по технологии, предложенной И. В. Винаровым с сотрудниками [5, 6]. Технология оказалась весьма сложной. Она предусматривает первичное выщелачивание 2М H2 So4 при 105—110°С и три водных промывки нерастворимого носителя. После сушки при 200 °С и прокалки при 600 °С носитель возвращается в производство свежего катализатора. Ванадийсодержащие кислые растворы нейтрализуют аммиаком до рН = 2,8 для проведения цементации мышьяка на медной стружке для его отделения. Очищенный раствор нейтрализуют аммиаком до рН = 8,5, окисляют ванадий пероксидом водорода и при температуре 90 °С осаждают первичный концентрат, который после сушки и прокалки содержит 40 % V2O5. Его кипятят с водой при Ж : Т = 2 в течение 1 ч, дважды промывают и сушат. Готовый продукт содержит 90 % пентоксида ванадия. Такая технология оказалась нерентабельной, хотя и позволяет получать довольно чистые продукты. Образующиеся сульфаты калия и аммония пригодны лишь в качестве удобрений.

Технология предусматривает восстановительное выщелачивание в присутствии металлического железа, осаждение четырехвалентного ванадия щелочью или аммиаком, окисление ванадия пероксидом водорода в пульпе, очистку от примесей, гидролитическое осаждение пентоксида ванадия, его сушку и прокалку. Ванадий теряется на стадии очистки от примесей из-за образования труднорастворимых ванадатов железа. Использование пероксида водорода в качестве окислителя (требуется 2—3-кратный избыток) вряд ли экономически оправданно.

Такое восстановительное выщелачивание позволяет максимально извлечь ванадий из ОВК. В качестве окислителя предлагается использовать газообразный хлор из баллона или барботаж воздухом в щелочной среде (рН=8,5—9,0). Технология оказалась эффективной, извлечение ванадия составило 85 %, а содержание в продукте пентоксида ванадия — 80 % .

Только экономически выгодной технологией можно решить проблему утилизации ОВК. Поэтому рекомендации приближения переработки к месту использования ВК и производства их позволяют резко снизить затраты на сырье, технологическое тепло, водоснабжение и, главное, будут исключены операции по подготовке готовой продукции к перевозке и доставка ее. Наряду с этим предлагаемая технология должна быть надежной, простой, с минимальными затратами на сырье.

Исходя из состава ОВК и учитывая многочисленные исследования по выщелачиванию, в качестве растворителя выбрали воду. При взаимодействии с водой пиросульфата калия образуется серная кислота, которая способствует переходу не только сульфата ванадила, но и частично пятивалентного ванадия. Поскольку пятивалентный ванадий плохо растворим в кислотах, то добавление восстановителя для ванадия повысит степень его извлечения. Наряду с этими процессами сульфат калия переходит в бисульфат, и растворимость его повышается в пять раз. Поэтому первую стадию водного выщелачивания необходимо проводить при таких отношении Ж : Т и температуре, чтобы в раствор перешли максимально ванадий и практически полностью сульфат.

Для более полного отмывания носителя операцию водного выщелачивания повторяют, но фильтрат используют на первом выщелачивании.

Полученный кислый (рН < 1) почти насыщенный сульфатами раствор содержит до 20 г/л ванадия и большую часть (около 80 % находящегося в ОВК) мышьяка. Наиболее рациональный способ окисления ванадия в кислом растворе — это электролиз. Чтобы избежать возможности образования арсина (НзАs), рекомендована оригинальная конструкция трехкамерного электролизера. В нем две катодные камеры, заполненные 5 %-ным раствором сульфата калия, отделены от анодной ионитовыми мембранами типа МА-41. Анодом служит либо платиновая сетка, либо платинированный титан. Катоды из нержавеющей стали.

Такой способ окисления ванадия экономичен. Экологически чист, позволяет сохранить в растворе кислоту и сульфаты и дает возможность осаждать ванадий простым нагреванием. Для получения более чистого осадка в раствор добавляют затравку — кристаллический пентоксид ванадия, а осаждение — кристаллизацию — ведут при низких значениях рН = 1—1,5, чтобы в осадок не переходил мышьяк, находящийся в растворе в виде недиссоциированной мышьяковой кислоты НзАs04.

Отмытый водой носитель — кремнезем или диатомит—подвергают обработке раствором КОН при Х:Т= 1 и температуре 90°С в течение одного часа. При низких концентрациях КОН в раствор переходят только оставшиеся ванадий и мышьяк, а при более высоких (больше 12— 17 %) растворяется аморфный кристобалит, содержание которого в кремнеземе бывает больше 30 %. После такой обработки чистый носитель можно использовать в качестве добавки к силикагелю или диатомиту при производстве свежего катализатора или готовить катализатор на его основе.

Щелочным раствором нейтрализуют до рН = 3 кислый маточный раствор после отделения осадка ванадия. Для этой же цели используют отработанный католит. Образующийся осадок содержит гидроксиды и арсенаты, т. е. основные вредные примеси, а также небольшое количество кремниевой кислоты. Если в этом осадке окажется много сульфата калия, то его следует отмыть на фильтре горячей водой. Полученное небольшое количество осадка, содержащего мышьяк, захоранивают.

Остатки щелочного раствора и отработанный катилит объединяют с очищенным кислым раствором для перевода остатков бисульфата калия в гораздо менее растворимый сульфат калия. Затем смесь охлаждают и кристаллизуют сульфат калия, который отделяют и используют для приготовления католита и свежего катализатора.

В этом случае, если технология будет реализована вдали от заводов-изготовителей катализаторов, то операцию приготовления пропиточного раствора можно заменить выпаркой маточного раствора после кристаллизации K2SO4 досуха. Получаемый при этом твердый остаток пригоден для изготовления свежего катализатора, а конденсат будет использован для выщелачивания в данной технологии.

В целом технология практически безотходная. Осадок, содержащий мышьяк в виде труднорастворимого арсената, настолько незначителен, что проблем с захоронением его не возникает.


Литература

1. Боресков Г. К. Катализ в производстве серной кислоты.— М.: Госхимиздат, 1954.— С. 175.

2. Технология катализаторов/Мухленов И. П., Добкина Е. И., Дерюшкина В, И., Сороко В. Е.— Л.: Химия, 1989.

3. Ажихина Ю. В., Серегин А. Н., Рудин В. Н. Металлургическая технология переработки отработанных ванадиевых катализаторов сернокислотного производства//Тез. докл. VII Всерос. Совещ. 16—20 сентября 1996 г., Пермская обл., г. Чусовой.— С. 46.

4. Сирина Т. П., КрасненкоТ. И. Технология переработки ОВК, получающихся при производстве серной кислоты//Тез. докл. VII Всерос. совещ. 16—20 сентября 1996 г., Пермская обл., г. Чусовой.— С. 78.

5. А. с. 1162093 СССР. МКИ В 01 F 23/92. Способ извлечения V2O5 из ОВК/Авт. изобрет. И. В. Винаров, Р. Г. Янкелевич, О. В. Владимирова, И. В. Починок.— Опубл. 23.05.90. Бюл. № 19.

6. Регенерация ценных компонентов отработанного катализатора окисления SO2 — СВД/Винаров И. В., Владимирова О. В., Починок И. В., Янкелевич Р. Г. // Комплексное использование минерального сырья.— 1992.— № 6 (168).— С. 77.

7. Киселев К. А., Велитиченко В. Л., Рыльков С. А. Разработка экономичной технологии извлечения V2O5 из отработанных ванадиевых катализаторов//Тез. докл. VII Всерос. совещ. 16—20 сентября 1996 г., Пермская обл., г. Чусовой.— С. 69.

8. Комплексная утилизация отработанных ванадиевых катализаторов сернокислотного производства/Терлихбаева А. Ж., Фильцев Ю. Н., Козлов В. А. и др.//Комплексное использование минерального сырья.— 1994.— № 3 (183).— С. 87.

9. Технология комплексной утилизации отработанных ванадиевых катализаторов сернокислотного производства/Козлов В, Н., Рабинович Е. М., Ахметова К.Ш. и др.//Тез. докл. VII Всерос. совещ. 16—20 сентября 1996г., Пермская обл., г. Чусовой.— С. 64.

10. Безруков И. Я., Кляйн С. Э. Проблемы переработки отработанных ванадиевых катализаторов производства серной кислоты//Тез. докл. VII Всерос. совещ. 16—20 сентября 1996 г., Пермская обл., г. Чусовой.— С. 79.

11. Безруков И. Я., Кляйн С. Э. Переработка отработанных ванадиевых катализаторов сернокислотного производства//Химия твердого тела и новые материалы. Всерос. конф., г. Екатеринбург, 14—18 октября 1996 г.: Сб. докл.— 1996.— Т. 2.— С. 225.


Информация о работе «Особенности извлечения ванадия из отработанных катализаторов»
Раздел: Промышленность, производство
Количество знаков с пробелами: 34183
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
28943
0
6

... слой покрытия толщиной 0,005—0,02 мм. В результате поверхностный слой получает высокую твердость и повышенную износостойкость, что приводит к значительному росту стойкости инструмента. Глава 3. Примеры извлечения вольфрама из отходов промышленного производства 3.1 Вольфрам из карбидов металлов, получаемых путем спекания В настоящее время для извлечения металлов из лома карбидов металлов, ...

Скачать
123884
4
0

... удобным и понятным как для специалиста-проектировщика, так и для любого пользователя САПР. Основные средства взаимодействия человека и машина - это различные диалоговые системы. САПР трубчатых реакторов для производства малеинового ангидрида использует следующие типы диалога: 1) диалог типа "меню". Данный тип меню показан на рисунке 4. На начальном этапе работы САПР в подсистеме ввода и ...

Скачать
259162
24
61

... ? 25. В чем сущность биохимических, фотохимических, радиационно-химических, плазмохимических процессов? Указать области их применения. 26. Какие основные группы физических процессов используют в системах технологий? 27. Дать определение машиностроению как комплексной области. Какова структура машиностроительного предприятия? 28. Раскрыть сущность понятий «изделие», «деталь», «сборочная единица ...

Скачать
36676
0
3

... в поверхность очищаемого изделия. В результате на поверхности очищенного изделия образуется слой металла, восстановленного из оксидов. Энергозатраты на очистку 1 м2 в зависимости от степени загрязненности поверхности составляют 0,3 – 2,0 кВт/ч.   Глава 3 АБРАЗИВНЫЕ МАТЕРИАЛЫ ИЗ ОТХОДОВ ОГНЕВОЙ ЗАЧИСТКИ ПОВЕРХНОСТЕЙ Огневая зачистка поверхности стальных заготовок, болванок, брусков и плит, ...

0 комментариев


Наверх