8. Длина цепи
l = lp * p = 4495,8 мм
9. Диаметры звёздочек.
Диаметр делительной окружности:
ведущей звёздочки:
dd1 = p / sin(1800/ z1) = 304 мм
ведомой звёздочки:
dd2 = p / sin(1800/ z2) = 618,9 мм
Диаметр окружности выступов:
ведущей звёздочки:
Dе1 = p*(K + Кz1 – 0,31/λ) = 324,8 мм,
где К = 0,7 – коэффициент высоты зуба;
Кz1 – коэффициент числа зубьев:
Кz1 = ctg 1800/ z1 = 7,92
λ – геометрическая характеристика зацепления:
λ = р/d1 = 3,43
где d1 = 11,1 мм – диаметр ролика шарнира цепи
ведомой звёздочки:
Dе2 = p*(K + Кz2 – 0,31/λ) = 641 мм,
где
Кz2 = ctg 1800/ z2 = 16,21
Диаметр окружности впадин:
ведущей звёздочки:
Di1 = dd1 – (d1 – 0,175*√dd1)= 295,9 мм;
ведомой звёздочки:
Di2 = dd2 – (d1 – 0,175*√dd2)= 612,2 мм.
Проверочный расчет.
10. Проверка частоты вращения меньшей звёздочки:
n1 ≤ [n]1,
где n1 = 50,93 об/мин – частота вращения тихоходного вала редуктора;
[n]1 = 15*103/p = 393,7 об/мин – допускаемая частота вращения.
50,93 < 393,7.
11. Проверка числа ударов цепи о зубья звездочек:
U ≤ [U],
где U – расчетное число ударов цепи:
U = 4*z1*n1/(60*lp) = 0,72;
[U] – допускаемое число ударов:
[U] = 508/р = 13,33;
0,72 < 13,33.
12. Фактическая скорость цепи:
υ = z1*p*n1/(60*103) = 0,8 м/с.
13. Окружная сила, передаваемая цепью:
Ft = P1*103/υ = 3162 Н,
где P1 = 2,556 кВт - мощность на ведущей звездочке.
14. Проверка давления в шарнирах цепи:
Pц = Ft*Kэ/A ≤ [Рц],
где а) А – площадь проекции опорной поверхности шарнира:
A = d1*b3 = 281,94 мм2,
где d1 и b3 – соответственно диаметр валика и ширина внутреннего звена цепи:
d1 = 11,1 мм,
b3 = 25,4 мм;
б) [Рц] = 35 МПа – уточненное;
Pц = 26,28 МПа < [Рц].
15. Проверка прочности цепи.
Прочность цепи удовлетворяется соотношением:
S ≥ [S],
где [S] = 7,5 – допускаемый коэффициент запаса прочности;
S – расчетный коэффициент запаса прочности:
S = Fp / (Ft*Kд + F0 + Fυ),
где а) Fp = 124587 Н – разрушающая нагрузка цепи;
б) F0 – предварительное натяжение цепи от провисания ведомой ветви:
F0 = Kf*q*a*g,
где Kf = 3 – коэффициент провисания для передач, наклоненных к горизонту до 400;
q = 5,5 кг/м – масса 1 м цепи;
а = 1,5158 м – межосевое расстояние;
g = 9,81 м/с2 – ускорение свободного падения;
F0 = 245 Н;
в) Fυ – натяжение цепи от центробежных сил:
Fυ = q*υ2 = 3,6 Н;
S = 36,5 > [S].
16. Сила давления на вал:
Fоп = kв*Ft + 2*F0 = 4127 Н,
где kв = 1,15 – коэффициент нагрузки вала.
РАЗРАБОТКА ЭСКИЗНОГО ПРОЕКТА
1. Проектный расчёт валов:
Предварительные значения диаметров различных участков стальных валов:
для быстроходного (входного) вала:
d ≥ (7…8)* 3√ТБ = 7,5*3√38,13 = 25 мм
dП ≥ d + 2*t = 25 + 2*2,2 =30 мм
dБП ≥ dП + 3*r = 30 + 3*2 = 36 мм;
для промежуточного:
dК ≥ (6…7)* 3√ТПР = 6,5*3√156,59 = 40 мм
dБК ≥ dК + 3*f = 40 +3*1,2 = 48 мм,
dП = dК – 3*r = 40 – 3*2,5 = 35 мм
dБП ≥ dП + 3*r = 35+3*2,5 = 40 мм;
для тихоходного (выходного) вала:
d ≥ (5…6)* 3√ТТ = 5,5*3√497,92 = 45 мм
dП ≥ d + 2*t = 45 + 2*2,8 = 50 мм
dБП ≥ dП + 3*r = 50 + 3*3 = 60 мм,
где t – высота заплечика,
r – координата фаски подшипника,
f – размер фаски колеса.
2. Выбор типа подшипников.
1) Быстроходный вал.
Шариковые радиальные однорядные, посадочный диаметр 30 мм, легкая серия 206 (Сr = 19,5кН, С0r = 10 кН).
Схема установки – враспор.
2) Промежуточный вал.
Шариковые радиальные однорядные, посадочный диаметр 35 мм, легкая серия 207 (Сr = 25,5кН, С0r = 13,7 кН).
Схема установки – плавающая.
3) Тихоходный вал.
Роликовые конические однорядные, посадочный диаметр 50 мм, легкая серия 7210 (α = 12 ÷ 16о, Сr = 56кН, С0r = 40 кН).
Схема установки – враспор.
ПРОВЕРОЧНЫЙ РАСЧЕТ ВАЛОВ
Быстроходный вал:
FР = 402 H
Ft = 1795 H
Fr = 661 H
Fa = 273 H
d1 = 42 мм
a = 84 мм
b = 48 мм
c = 150 мм
d = 48 мм
Найдём радиальные реакции в опорах вала:
Вертикальная плоскость:
∑МВ = 0; - FР*(a+b+c+d) + ZA*(b+c+d) + Fr*(c+d) + Fr*d = 0
ZA = [ FР*(a+b+c+d) - Fr*(c+d) - Fr*d ]/ (b+c+d)
ZA = - 122 H
∑МA = 0; - FР*a - Fr*b - Fr*(b+c) + ZB*(b+c+d) = 0
ZB = [ FР*a + Fr*b + Fr*(b+c)]/ (b+c+d)
ZB = 798 H
Горизонтальная плоскость:
∑МВ = 0; - YA* (b+c+d) + Ft * (c+d) + Ft * d = 0
YA = 1795 H
∑МA = 0; - Ft * b - Ft * (b+c) - YB* (b+c+d) = 0
YB = 1795 H
Суммарные радиальные реакции:
RA = √( YA2 + ZA2) = 1799 Н
RВ = √( YВ2 + ZВ2) = 1964 Н
Эпюры изгибающих моментов:
Мy :
CA: 0 ≤ х1 ≤ a; Мy (х1) = - FР* х1 ,
Мy (0) = 0, Мy (a) = - 33,8 Н*м
AD: 0 ≤ х2 ≤ b; Мy (х2) = ZA* х2 - FР* (a+х2),
Мy (0) = -33,8 Н*м, Мy (b) = - 58,9 Н*м
BE: 0 ≤ х3 ≤ d; Мy (х3) = - ZВ* х3,
Мy (0) = 0, Мy (d) = - 38,3 Н*м
ED: 0 ≤ х4 ≤ c; Мy (х4) = - ZB*(d+х4) + Fr* х4,
Мy (0) = - 38,3 Н*м, Мy (c) = - 58,9 Н*м.
Мz :
CA: 0 ≤ х1 ≤ a; Мz (х1) = 0
AD: 0 ≤ х2 ≤ b; Мz (х2) = -YA* х2,
Мz (0) = 0, Мz (b) = - 86,2 Н*м
BE: 0 ≤ х3 ≤ d; Мz (х3) = - YВ* х3,
Мz (0) = 0, Мz (d) = - 86,2 Н*м
ED: 0 ≤ х4 ≤ c; Мz (х4) = Ft*х4 - YB*(d+х4),
Мz (0) = - 86,2 Н*м, Мz (c) = - 86,2 Н*м.
Эпюра крутящего момента T:
DE: 0 ≤ х ≤ c; T = Fa*0,5 d1 = 5,73 Н*м;
Эпюра суммарного изгибающего момента МИ:
МИ = √(Мy2 + Мz2)
МИ (C) = МИ (B) = 0; МИ (A) = 33,8 Н*м.;
МИ (D) = 104,4 Н*м.; МИ (E) = 94,3 Н*м.
Проверка вала по напряжениям изгиба:
Mэк = Mэк (D) = √( МИ2 + Т2) = 104,5 Н*м.
32*Mэк/(π*d13) ≤ [σ]F
14,4 МПа ≤ [σ]F
Расчет вала на сопротивление усталости.
Проверочный расчет вала, заключающийся в определении коэффициента прочности в опасном сечении, выполняют по формуле:
S = Sσ * Sτ / √( Sσ2 + Sτ2) ≥ [S]
Допускаемый коэффициент запаса прочности:
[S] = 1,5 ÷ 2,5
Коэффициент запаса прочности по нормальным напряжениям:
Sσ = σ-1/ [kσ*σa /(εσ*β) + ψσ*σm],
где σ-1 = 420 МПа – предел выносливости стали,
kσ = 1,8 - эффективный коэффициент концентрации нормальных напряжений,
εσ = 0,75 – масштабный фактор для нормальных напряжений,
β = 0,95 – коэффициент, учитывающий влияние шероховатости,
σa – амплитуда цикла нормальных напряжений:
σa = σи = Ми / (0,1* d3) = 14,5 МПа
σm – среднее напряжение цикла нормальных напряжений:
σm = 4* Fa / (π * d2) = 0,2 МПа
ψσ = 0,25
Sσ = 11,45.
Коэффициент запаса прочности по касательным напряжениям:
Sσ = τ-1/ [kτ*τa /(ετ*β) + ψτ*τm],
где τ-1 = 250 МПа – предел выносливости стали,
kσ = 1,37
ετ = 0,75
β = 0,95
τa = τm = 0,5* T / (0,2* d3) = 0,39 МПа
ψτ = 0,1
Sτ = 316,9.
S = 11,4 > [S].
Проверим выбор подшипника.
Посадочный диаметр d = 30 мм, лёгкая серия 206 (Сr = 19,5 кН, С0r = 10 кН).
Требуемая долговечность:
[Lh] = L*365*8*3 = 43800 ч
Номинальная долговечность (ресурс) подшипника в миллионах оборотов:
L = (Сr/P)p,
где Сr = 19,5 кН – динамическая грузоподъёмность по каталогу,
Р – эквивалентная динамическая нагрузка,
р = 3 – показатель степени для шарикоподшипников.
Номинальная долговечность в часах:
Lh = 106*L/ (60*n) = 106 * (Сr /P)p / (60*n)
Для определения эквивалентной нагрузки находим отношение:
Fa/(V*Fr) = 0 < e ,
значит X = 1, Y = 0; Кб = 1,4, Кт = 1.
Р = V*Fr *KБ*КТ = 925,4 Н
L = 9356,5 (млн.об.)
Lh = 217340,3 ч.
Т.к. Lh > [Lh] , то выбранный подшипник подходит
Промежуточный вал:
Ft = 1795 H
Fr = 661 H
Fa = 273 H
d2 = 178 мм
Ft1 = 5444 H
Fr1 = 2192 H
Fa1= 2575 H
d1 = 58 мм
a = 50 мм
b = 75 мм
c = 75 мм
d = 50 мм
Найдём радиальные реакции в опорах вала:
Вертикальная плоскость:
∑МВ = 0; ZA*(a+b+c+d) - Fr*(b+c+d+d) + Fr1*(c+d) = 0
ZA = - 435 H
∑МA = 0; Fr*(a+a+b+c) - Fr1*(a+b) + ZB*(a+b+c+d) = 0
ZB = 435 H
Горизонтальная плоскость:
∑МВ = 0; - YA* (a+b+c+d) - Ft * (b+c+d+d) + Ft1 * (c+d) = 0
YA = 927 H
∑МA = 0; Ft * (a+a+b+c) - Ft1 * (a+b) + YB* (a+b+c+d) = 0
YB = 927 H
Суммарные радиальные реакции:
RA = √( YA2 + ZA2) = 1024 Н
RВ = √( YВ2 + ZВ2) = 1024 Н
Эпюры изгибающих моментов:
Мy :
AC: 0 ≤ х1 ≤ a; Мy (х1) = ZA * х1 ,
Мy (0) = 0, Мy (a) = - 21,8 Н*м
CD: 0 ≤ х2 ≤ b; Мy (х2) = ZA* (a+х2) – Fr* х2,
Мy (0) = - 21,8 Н*м, Мy (b) = - 87 Н*м
BE: 0 ≤ х3 ≤ d; Мy (х3) = - ZB*х3,
Мy (0) = 0, Мy (d) = - 21,8 Н*м
ED: 0 ≤ х4 ≤ c; Мy (х4) = - ZВ* (d+х4) – Fr* х4,
Мy (0) = - 21,8 Н*м., Мy (c) = - 87 Н*м.
Мz :
AC: 0 ≤ х1 ≤ a; Мz (х1) = -YA* х2,
Мz (0) = 0, Мz (a) = - 46,35 Н*м
CD: 0 ≤ х2 ≤ b; Мz (х2) = - Ft*х2 - YA*(a+х2),
Мz (0) = - 46,35 Н*м, Мz (b) = - 250,5 Н*м
BE: 0 ≤ х3 ≤ d; Мz (х3) = - YВ* х3,
Мz (0) = 0, Мz (d) = - 46,35 Н*м
ED: 0 ≤ х4 ≤ c; Мz (х4) = - YВ* (d+х4) - Ft*х4,
Мz (0) = - 46,35 Н*м, Мz (c) = - 250,5 Н*м.
Эпюра крутящего момента T:
CD: 0 ≤ х ≤ c; T = Fa*0,5 d2 = 24,3 Н*м;
ED: 0 ≤ х ≤ b; T = - Fa*0,5 d2 = - 24,3 Н*м.
Эпюра суммарного изгибающего момента МИ:
МИ = √(Мy2 + Мz2)
МИ (A) = МИ (B) = 0; МИ (C) = 51,2 Н*м.;
МИ (D) = 265,2 Н*м.; МИ (E) = 51,2 Н*м.
Проверка вала по напряжениям изгиба:
Mэк = Mэк (D) = √( МИ2 + Т2) = 296,6 Н*м.
32*Mэк/(π*d13) ≤ [σ]F
15,5 МПа ≤ [σ]F
Расчет вала на сопротивление усталости.
Проверочный расчет вала, заключающийся в определении коэффициента прочности в опасном сечении, выполняют по формуле:
S = Sσ * Sτ / √( Sσ2 + Sτ2) ≥ [S]
Допускаемый коэффициент запаса прочности:
[S] = 1,5 ÷ 2,5
Коэффициент запаса прочности по нормальным напряжениям:
Sσ = σ-1/ [kσ*σa /(εσ*β) + ψσ*σm],
где σ-1 = 420 МПа – предел выносливости стали,
kσ = 2,13 - эффективный коэффициент концентрации нормальных напряжений,
εσ = 0,73 – масштабный фактор для нормальных напряжений,
β = 0,95 – коэффициент, учитывающий влияние шероховатости,
σa – амплитуда цикла нормальных напряжений:
σa = σи = Ми / (0,1* d3) = 13,6 МПа
σm – среднее напряжение цикла нормальных напряжений:
σm = 4* Fa / (π * d2) = 0
ψσ = 0,25
Sσ = 10,05.
Коэффициент запаса прочности по касательным напряжениям:
Sσ = τ-1/ [kτ*τa /(ετ*β) + ψτ*τm],
где τ-1 = 250 МПа – предел выносливости стали,
kτ = 1,48
ετ = 0,73
β = 0,95
τa = τm = 0,5* T / (0,2* d3) = 0,62 МПа
ψτ = 0,1
Sτ = 180,5.
S = 10,03 > [S].
Проверим выбор подшипника.
Посадочный диаметр d = 35 мм, лёгкая серия 207 (Сr = 25,5 кН, С0r = 13,7 кН).
Номинальная долговечность (ресурс) подшипника в миллионах оборотов:
L = (Сr/P)p,
где Сr = 25,5 кН – динамическая грузоподъёмность по каталогу,
Р – эквивалентная динамическая нагрузка,
р = 3 – показатель степени для шарикоподшипников.
Номинальная долговечность в часах:
Lh = 106*L/ (60*n) = 106 * (Сr /P)p / (60*n)
Для определения эквивалентной нагрузки находим отношение:
Fa/(V*Fr) = 0 < e ,
значит X = 1, Y = 0; Кб = 1,4, Кт = 1.
Р = V*Fr *KБ*КТ = 3068,8 Н
L = 574,2 (млн.об.)
Lh = 56890 ч.
Т.к. Lh > [Lh] , то выбранный подшипник подходит
Тихоходный вал:
Fц = 4127 H
Ft = 5444 H
Fr = 2192 H
Fa = 2575 H
d1 = 86 мм
a = 125 мм
b = 125 мм
c = 80 мм
Найдём радиальные реакции в опорах вала:
FцY = Fц * cos300 = 3574 H
FцZ = Fц * sin300 = 2064 H
Вертикальная плоскость:
∑МВ = 0; FцZ*c + ZA*(а+b) - Fr*b = 0
ZA = - 436 H
∑МA = 0; FцZ*(a+b+c) + ZB*(a+b) + Fr*a = 0
ZB = - 4012 H
Горизонтальная плоскость:
∑МВ = 0; - YA* (a+b) - Ft * b - FцY*c = 0
YA = - 3866 H
∑МA = 0; Ft * a + YB* (a+b) - FцZ*(a+b+c) = 0
YB = 1996 H
Суммарные радиальные реакции:
RA = √( YA2 + ZA2) = 3890 Н
RВ = √( YВ2 + ZВ2) = 4481 Н
Эпюры изгибающих моментов:
Мy :
AC: 0 ≤ х1 ≤ a; Мy (х1) = ZA * х1 ,
Мy (0) = 0, Мy (a) = - 54,5 Н*м
DB: 0 ≤ х2 ≤ c; Мy (х2) = - FцZ* х2,
Мy (0) = 0, Мy (c) = - 165 Н*м
BC: 0 ≤ х3 ≤ b; Мy (х3) = - FцZ* (c+х3) – ZB * x3,
Мy (0) = - 165 Н*м, Мy (b) = 78 Н*м
Мz :
AC: 0 ≤ х1 ≤ a; Мz (х1) = -YA* х1,
Мz (0) = 0, Мz (а) = - 483 Н*м
DB: 0 ≤ х2 ≤ c; Мz (х2) = FцY* х2,
Мz (0) = 0, Мz (c) = 286 Н*м
BC: 0 ≤ х3 ≤ b; Мz (х3) = FцY* (c+х2) - YВ* х3,
Мz (0) = 286 Н*м, Мz (b) = 483 Н*м
Эпюра крутящего момента T:
CB: 0 ≤ х ≤ b; T = Fa*0,5 d1 = 75 Н*м;
Эпюра суммарного изгибающего момента МИ:
МИ = √(Мy2 + Мz2)
МИ (A) = МИ (D) = 0; МИ (C) = 975 Н*м.; МИ (B) = 330 Н*м.
Проверка вала по напряжениям изгиба:
Mэк = Mэк (D) = √( МИ2 + Т2) = 978 Н*м.
32*Mэк/(π*d13) ≤ [σ]F
... зубчатой с шарниром скольжения (16) где ν - число рядов роликовой или втулочной цепи; φt=B/t - коэффициент ширины цепи; для зубчатых цепей φt=2…8. 7. РАСЧЕТ ЦЕПНОЙ ПЕРЕДАЧИ МЕХАНИЧЕСКОГО ПРИВОДА ЛЕНТОЧНОГО ТРАНСПОРТЕРА 1. Учитывая небольшую передаваемую мощность N1 при средней угловой скорости малой звездочки, принимаем для передачи однорядную роликовую цепь. 2. ...
... нагрузка (7,5 [1,ст.117]) где V=1-т.к вращается внутреннее кольцо подшипника; Кб=1-коэффициент безопасности для приводов ленточных конвейеров таб.9.19 (1.с.125); КТ- температурный коэффициент таб.9.20 (1.с.126). Расчетная долговечность/1, формула 9.1/ Расчетная долговечность Для зубчатых редукторов ресурс работы подшипников может превышать от36 тыс.ч. до 10 тыс ...
... с синхронной частотой вращения 750 об/мин. 2. Кинематический и энергетический расчёт привода 2.1 Кинематический расчёт Требуемое передаточное число привода при принятом электродвигателе: Разобьём передаточное число привода между редуктором и ремённой передачей. Примем: передаточное число ремённой передачи ирп = 3,55, тогда передаточное число редуктора: Частота вращения ...
... Муфты типа МУВП позволяют смягчать ударные нагрузки и рывки за счёт упругих элементов в составе муфты, кроме того, они допускают некоторые неточности сборки. Для соединения быстроходного вала редуктора с валом электродвигателя выбираем муфту упругую втулочно-пальцевую (МУВП) ГОСТ 21424-75. Принимаем муфту МУВП 250-40-1 У3 ГОСТ 21424-93. Номинальный крутящий момент Мкр., Н×м = 250 Частота ...
0 комментариев