9. Расчёт промежуточного вала редуктора на статическую способность и долговечность
9.1 Расчет вала на несущую способность
Силы, действующие на вал во время работы редуктора:
- силы, действующие на цилиндрическую шестерню II ступени: окружная сила Ftш = 20470 Н, Радиальная сила Frш =7928 Н; Осевая сила Faш =7450 Н.
- силы, действующие на цилиндрическое колесо I ступени Ftk= 8651 Н; радиальная сила Frk= 3349 Н; осевая сила Fак = 3139 Н.
Вычерчиваем расчетную схему вала (рис.9.1) и определяем размеры между опорами и точками приложения сил (расстояние определяем по первой эскизной компоновке редуктора измерением, допустив, что силы приложенные по середине колеса и шестерни): l1 = 108 мм, l2 = 184 мм, l3 = 156 мм.
Находим реакции в опорах от сил в вертикальной и горизонтальной плоскости:
- в вертикальной х0у
ΣМF(D) =0.
.
RDX= RCX–Frш +Frk= 7262 - 7928 + 3349 = 2683 Н
- в горизонтальной zOx
ΣМF(D) =0
ΣМF(D) = - Ftш ∙(l1+l2)+ Ftk∙l1+ Rcz(l1 + l2 +l3 ) = 0
RDZ = - Rcz + Ftш +Ftk = - 11256 + 20470 – 8651 = 562Н
Выполняем построения эпюр моментов изгиба в вертикальной и горизонтальной плоскостях, суммарного крутящего момента и изгиба.
Момент изгиба в вертикальной плоскости:
в m.K3: МК3 = RDX· l1 = 2683 · 0,108 = 290 Нм;
в m.K4: МК4 = RCX· l3 = 7262 · 0,156 = 1132,8 Нм;
Момент изгиба в горизонтальной плоскости
в m.K4: МК4 = RDz· l1 = 562 · 0,108 = 61Нм;
Суммарный момент изгиба определяется по формуле:
в m.K3:
в m.K4:
Определяем приведенный (эквивалентный) момент в опасном сечении.
Исходя из анализа построенных эпюр моментов опасное сечение вала находится на шестерне цилиндрической передачи II ступени (точка К4).
Значение эквивалентного момента в m.K4:
.
– коэффициент, табл. 5.3., [1] для материала вала
– сталь 40. [σ1], σ0 - допустимые напряжения для материала вала соответственно при симметричном и при пульсирующем циклах нагрузки, табл. 5.3., [1].
Определяем диаметр вала в опасном сечении:
Полученный диаметр округляем до ближайшего большего значения из стандартного ряда Rа 40 ГОСТ 6636-69. С учетом шпоночного паза принимаем d32 = 75мм.
Диаметр вала в этом сечении, принятый в условном расчете
d32 = 75,0мм, т.е. условие выполняется.
9.2 Расчет вала на прочность
Для опасного сечения быстроходного вала, который имеет конструктивный концентратор напряжений – переход от меньшего диаметра к большему (между участками под подшипник и шестерню), определяем характеристики напряжений, [1], с.173- 185.
- границы выносливости:
для напряжений изгиба при симметричном цикле:
σ-1 = 043σВ=0,43 · 800 = 344 МПа, σm = 0 МПа;
для напряжений кручения при пульсирующем цикле:
τ-1 = 0,58 σ-1 = 0,58 · 344 = 199,52 МПа; τm = τа =2,79 МПа;
-амплитуды напряжений:
при симметричном цикле:
где МЗj– суммарный момент изгиба в m. К4, Нм,
Рис. 11 .1.
Зj– осевой момент в сечении опор j – того участка вала. Для сечения в m. К4, м3.
где d – диаметр вала под подшипник,
при пульсирующем цикле:
где W кj– полярный момент сечения опор j – того участка вала. Для сечения под шпонку, м3.
Выбираем коэффициенты:
- эффективные коэффициенты конструкционных напряжений при изгибе - Кσ = 1,75, при кручении - Кτ =1,50, табл. 5.11, [1].
- масштабные коэффициенты, учитывающие снижения границы выносливости с увеличением размеров вала: при изгибе - έσ = 0,745; при кручении- έr= 0,745, табл. 5.16, [1].
- коэффициенты учитывающие свойства материалов до асимметрии цикла напряжений:
при изгибе – ψσ=0,02 + 2·10-4 · 800 = 0,18 МПа;
при кручении - ψτ=0,5ψσ= 0,5· 0,18 = 0,09 МПа.
Определяем коэффициент запаса прочности опасного сечения:
где Ѕσ и Ѕτ – коэффициенты запаса прочности при действии изгиба и кручения.
[Ѕ] –допустимое значение коэффициенты запаса прочности. Для редукторных валов [Ѕ] ≥2,5…3,0, с.185, [1].
,
,
Условие выполняется.
... (C/P) 3 ;αh =106/ (60·200) · (19,5/1,521) 3=175604 часов. эта величина превышает заданный расчетный срок службы привода tP=9928 часов. 6.4 Выбор муфт Для соединения тихоходного вала редуктора с барабаном (поз.5) конвейера используем упругую втулочно-пальцевую муфту (МВП), типоразмер которой выбираем по величине наибольшего диаметра соединяемых валов с учетом ограничения Т< [T], ...
... проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение. Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, те
... – КПД зубчатой цилиндрической прямозубой передачи; η3 = 0,99 – КПД пары подшипников качения, η4 = 0,8 – КПД цепной передачи Потребная мощность электродвигателя Частота вращения вала двигателя nЭ = n3 ∙ uРЕД ∙ uЦИЛ Где: – частота вращения вала конвейера; uРЕД = 16…50 – интервал передаточных чисел редуктора; uЦИЛ = 2,5…5 – интервал передаточных ...
... 12,4-14,5 мм. Назначаем dк = 25 мм. dбк ≥ 25+3 ּ 1 = 28 мм. Назначаем dбк = 28 мм. dп = 25-3 ּ 1,5 = 21,5 мм. Назначаем dп = 20 мм. dбп ≥ 20+3 ּ 1,5 = 24,5 мм. Назначаем dбп = 25 мм. 3.2.3 Проверочный расчет валов Плоскость YOZ (вертикальная). Для определения реакции Rb воспользуемся уравнением (3.4) - Fr1 ּ 28+Fa2 ּ 45+Fr2 ּ 39+Fa1 ...
0 комментариев