5. ПРОВЕРОЧНЫЙ РАСЧЕТ ВЕДОМОГО ВАЛА

Исходные данные:

   

  

5.1 Нахождение реакций в опорах и построение изгибающих моментов

Определение реакций в опорах (вертикальная плоскость)

 

 

Построение эпюр изгибающих моментов


Определение реакций в вертикальной плоскости

 

 

 

Построение эпюр изгибающих моментов горизонтальной плоскости

5.2 Суммарный изгибающий момент

Суммарный изгибающий момент в любой точке вала определяется по формуле


5.3 Построение эпюры эквивалентного момента

По определению второй вал подвергается как кручению, так и изгибу. Поэтому для проверочного расчета необходимо построение одной эпюры так называемого эквивалентного момента- это чисто изгибающий момент, который по воздействию на вал равен сумме воздействий крутящего и изгибающего моментов. Эквивалентный момент определяется по формуле

 

 

 

Из эпюры определяется опасное сечение- сечение, в котором  равно максимальному значению 60,76 мм.

5.4 Определение суммарных сил реакции в опорах А и В

H

 H


Рис.8 Построение эпюр для ведомого вала

 

5.5 Проверочный расчет вала по статическим нагрузкам

Данный расчет заключается в определении диаметра вала в опасном сечении из условия прочности на изгиб

Диаметр вала:

<  (см. п.4.1.2)

где - допускаемое напряжение для материала вала выбирается из табл. 9.4 [2] стр.125

5.6 Проверочный расчет вала на усталостную прочность

Данный расчет заключается в определении коэффициента запаса прочности S и его сравнении с допустимым.

Материал вала -сталь 45 (табл.12.7(1); d2=34 мм

Коэффициент запаса прочности определяется по формуле 9.10 [1]

, =1,5÷ 2,1

где - коэффициент запаса прочности по нормальным напряжениям, Кd=0,88 (табл. 12.12 (1)

- коэффициент запаса прочности по касательным напряжениям

где - эффективные коэффициенты концентраторов напряжений. Для выбранного материала из табл. 12.7 [1] выбирается

 


 

-допускаемые напряжения на усталость и на кручение

- коэффициент, учитывающий абсолютный диаметр и шероховатость вала, выбирается из табл. 12.16 [1]

*- коэффициенты, учитывающие отклонения циклов от симметричного. Для углеродистых сталей

 

,

для симметричного цикла

По табл.12.11(1) определяем Wz=3330 ; Wp=7190

  

 

Общий коэффициент запаса:

 >=1,5÷ 2,1


6. ПРОВЕРОЧНЫЙ РАСЧЕТ ПОДШИПНИКОВ

В связи с наличием осевых сил примем конические подшипники

Вал 2 Подшипник 7206  

Осевые составляющие RS:

Осевые силы:

 

Отношение:

< l, то х=1,0; Υ=0

> l, то х=0,4; Υ=1,64

Эквивалентная динамическая нагрузка:

где v=1 - коэффициент кольца

х - коэффициент осевой нагрузки

КБ =1,3 коэффициент безопасности

Кт =1 температурный коэффициент


Долговечность подшипников Lh

 > (h)=20000

где - динамическая грузоподъемность подшипника


7. ВЫБОР И РАСЧЕТ ШПОНКИ

Принимаем призматические шпонки

Вал 1 d1=22 мм

Шпонка b x h=6x6

t1 = 3,5 мм

t2 = 2,8 мм

Рабочая длина шпонки

 

где  cм= 110÷190 МПа (стр.91(1)- допускаемое напряжение смятия

Полная длина шпонки:

l= lр+ b= 5,6+6=11,6 мм

Берем l= 25 мм.

Вал 2 d=34 мм

Шпонка b x h=10x8

t1 = 5,0 мм

t2 = 3,3 мм

Рабочая длина шпонки

Полная длина шпонки:

l= lр+ b= 11,6+10=21,6 мм

Берем l2 =28 мм.

d'2=24 мм

Шпонка b x h=8x7

t1 = 4,0 мм

t2 = 3,3 мм

Рабочая длина шпонки

= 12 мм

Полная длина шпонки:

l= lр+ b= 16,4+8=22,4 мм ≈25мм

Рис.7. Схема шпоночного соединения


8. ВЫБОР СОРТА МАСЛА И СПОСОБА СМАЗКИ

Для уменьшения потерь мощности на трение и снижения интенсивности изнашивания трущихся поверхностей, а также для предохранения их от заедания, задиров, коррозии и для лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежное смазывание.

Выбор смазочного материала основан на опыте эксплуатации машин. Принцип назначения сорта масла следующий: чем выше контактные давления в зубьях, тем большей вязкостью должно обладать масло, чем выше окружная скорость колеса, тем меньше должна быть вязкость масла.

При скорости колеса V=0,3÷12,5 м/c смазка колес производится окунанием колес в масляную ванну (стр.134 (1)

По табл.8.1(1) примем сорт масла И-Г-А-46.

Подшипники смазываются разбрызгиванием при работе редуктора.

Глубина погружения колес в масло (hм):

2м<hм<0,25d2 hм=2·1=2 мм; hм=0,25d2=0,25·180=45мм

Примем hм=h2=10 мм

Объем масла:

V=0,5·P1=0,5·2,57=1,3 литр

Примем V=1,5 л.


ЗАКЛЮЧЕНИЕ

В данной работе был спроектирован конический редуктор, исходя из заданных выходной мощности, количества оборотов и передаточного числа. На базе данной работы были систематизированы теоретические знания. В данной работе представлена конструкция некоторых деталей и соединения, были даны условия, в которых находится редуктор, был сделан кинематический расчет сил, действующих на опору.


ЛИТЕРАТУРА

1. П.Ф.Дунаев "Детали машин", г.Москва, 1990 г.

2. И.Бостан ВРМ 2000, г.Кишинев, 2000 г.

3. А.Е.Шейнблит "Курсовое проектирование деталей машин" г.Москва, 1990 г.


Информация о работе «Проектирование конического редуктора»
Раздел: Промышленность, производство
Количество знаков с пробелами: 12408
Количество таблиц: 2
Количество изображений: 10

Похожие работы

Скачать
48035
0
11

... на 5 - 10 мм меньше длины ступицы колеса Lст, Lшп = L ст - (5 - 10). Длину ступицы принимают [5, ñ.30] в зависимости от диаметра d вала под ступицей: для цилиндрической передачи Lст = (1-1,5) · d; для конической передачи Lст = (1-1,2) · d. Длина шпонки Lшп’ = Lст - (5 - 10) = 75 – 12 = 63 . Выбираем Lшп = 63. Шпонка 20 х 12 х 63 по ГОСТ 23360 – 78. Напряжение смятия узких граней шпонки не ...

Скачать
24452
11
1

... поверхностях зуба, мкм; Rz80 – шероховатость на боковых поверхностях шпоночного паза в центральном отверстии, мкм; Rz40 – шероховатость на дне шпоночного паза, мкм.   2.4 Разработка технологического процесса изготовления конического зубчатого колеса   2.4.1 Выбор заготовки и способа ее получения Для изготовления данной детали используется сталь 18 ХГТ Характеристика стали 18ХГТ Марка ...

Скачать
30832
1
1

... являются основой для его дальнейшей конструкторской работы, а также для выполнения курсовых проектов по специальным дисциплинам и дипломного проекта. 1. Описание редуктора и принципа его работы В данной работе рассматривается главный редуктор вертолета. Входная коническая ступень. Вторая ступень - цилиндрическая. Редуктор предназначен для понижения оборотов и повышения крутящего момента на ...

Скачать
22505
1
1

... колес (цилиндрические, конические, коническо-цилиндрические и т.д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т.д.). Конические редукторы применяют для передачи движения между валами, оси которых пересекаются обычно под углом 90. Передачи с углами, отличными от 90 , ...

0 комментариев


Наверх