5 РАСЧЕТ СРЕДСТВ ЗАПРАВКИ НА ТОПЛИВОЗАПРАВОЧНЫХ ПУНКТАХ
Для заправки техники нефтепродуктами используются топливо- и маслораздаточные колонки.
Исходными данными для определения количества топливораздаточных колонок для каждого вида топлива служит:
• среднесуточная потребность в данном виде топлива, м3/сут;
• пропускная способность топливозаправочной колонки, машин/ч;
• продолжительность использования колонки, ч/сут;
• производительность колонки, м3/ч;
• средняя доза заправки машин, л;
• количество заправляемых машин.
Необходимое количество топливораздаточных колонок можно ориентировочно определить из выражения:
где Gcc - среднесуточный расход нефтепродукта; gk - пропускная способность одной топливозаправочный колонки, машин/час; кз - доля суточного расхода топлива, выдаваемого через заправочный пункт (для ориентировочных расчетов кз=0,7... 1,0); кк - коэффициент использования топливораздаточной колонки (для ориентировочных расчетов кк=0,5); t - продолжительность работы топливозаправочной колонки, ч/сут (для ориентировочньгх расчетов t =2.. .8 ч).
Пропускная способность одной топливораздаточной колонки определяется по формуле:
где tпв - продолжительность, вспомогательных операций (подача машины под заправку, установка раздаточного крана, отъезд от колонки и т. п.), мин. Ориентировочно tпв=5мин; (dз - средняя доза заправки; gН - производительность топливозаправочной колонки, л/мин производительность колонок типа КЭР-50-1,0; КЭР-50-0,5; КЭД-50-0,5 равна 50 л/мин.
Где d3i- средняя доза заправки i-го трактора (автомобиля) на нефтескладе, (значения доз заправок машин наиболее распространенных марок, полученные путем выборочного анализа фактических данных на заправочных пунктах различных предприятий; nтр.Аi- количество тракторов(автомобилей) i-й марки; nтрiAi- общее количество тракторов и автомобилей заправляемых на нефтескладе.
Количество маслораздаточных колонок, как правило, определяется исходя из числа марок потребляемых моторных масел (по одной на каждую марку масел). Принимаем, что на нефтескладе 5 маслораздаточных колонок.
Для проведения с/х работ устанавливаем следующий состав МТП:
Тракторы:
К-701………………………………………………………………………2 шт
ДТ-75М……………………………………………………………………1 шт
Т-150……………………………………………………………………...1 шт
МТЗ-80…………………………………………………………………...3 шт
Т-40……………………………………………………………………….3 шт
кг
кг
Принимаем n=2
Автомобили:
ГАЗ-3307………………………………………………………………9 шт
ЗИЛ-130………………………………………………………………….2 шт
кг
кг
Принимаем n=3
6 РАСЧЕТ СРЕДСТВ ПЕРЕКАЧКИ НЕФТЕПРОДУКТОВ И ТРУБОПРОВОДНЫХ КОММУНИКАЦИЙ НЕФТЕСКЛАДА
Технологическая схема нефтесклада, в зависимости от его назначения, должна обеспечивать возможность выполнения следующих операций:
• перекачки нефтепродуктов с участка приема в резервуары участков хранения;
• перекачки нефтепродуктов с участка хранения на участок отпуска в автомобильные средства транспортирования и заправки;
• перекачки нефтепродуктов с участка хранения на топливозаправочный пункт;
• перекачки нефтепродукта с участка приема непосредственно на топливозаправочный пункт, минуя участок хранения;
• внутрискладской перекачки из одного резервуара (группы резервуаров) в другой резервуар (группу резервуаров), а также между резервуарами одной группы;
• перекачки нефтепродукта из резервуаров в разливочную для затаривания в бочки.
Технологическая схема заправочного пункта (автозаправочной станции) должна предусматривать возможность слива топлива из автоцистерн в расходные резервуары насосом автоцистерны или автономным насосом и самотеком, а также забор топлива из резервуаров для заправки техники насосом топливораздаточной колонки, а также подачу масла из резервуара насосной установкой маслораздаточной колонки, установленной на горловине резервуара с маслом.
Сливные устройства топливораздаточного пункта могут устанавливаться непосредственно на крышке горловины резервуара или в специальном сливном колодце. Второй вариант предпочтительнее, так как позволяет размещать автоцистерны при сливе на безопасном удалении от резервуара.
Исходными данными для гидравлического расчета трубо-
проводов являются:
• выбранная технологическая схема нефтесклада с указанием местных сопротивлений;
• расстояние между объектами нефтесклада в соответствии с принятым генеральным планом;
• геодезические отметки объектов нефтесклада (профиль трассы трубопровода);
• физико-химические свойства перекачиваемых нефтепродуктов (вязкость, плотность, давление насыщенных паров);
• климатические условия района размещения нефтесклада (барометрическое давление и температура воздуха).
Гидравлический расчет обычно производится для участка трубопровода, эксплуатирующегося в наиболее неблагоприятных условиях, т. е. самого протяженного, имеющего наибольшее количество местных сопротивлений и наибольшую отрицательную разность геодезических отметок конечных точек участка.
При выполнении гидравлического расчета необходимо:
• обосновать производительность перекачки нефтепродуктов;
• определить для всех участков трубопроводных коммуникаций оптимальные внутренние диаметры и подобрать размеры труб согласно существующим стандартам;
• выбрать и расставить на трубопроводных коммуникациях необходимую запорную арматуру, фитинги и т. п.;
• рассчитать потери напора в трубопроводе;
• подобрать по каталожным данным насосы с характеристиками, обеспечивающими заданную производительность при операциях на нефтескладе;
• проверить насосы на бескавитационную работу;
• проверить всасывающие коммуникации на возможность разрыва струи жидкости вследствие образования паровых пробок.
Для перекачки нефтепродуктов на нефтескладе используются стационарные станции или передвижные насосные установки. Независимо от использования передвижного или стационарного варианта производительность средств перекачки должна обеспечивать требуемую скорость перекачки нефтепродуктов по трубопроводу.
Производится выбор насоса, обеспечивающего соответствующие показатели подачи и напора. Технические характеристики некоторых насосов, применяемых. для перекачки нефтепродуктов, приведены в таблицах.
Для привода насоса необходимо выбрать соответствующий двигатель. Передвижные средства перекачки укомплектованы двигателем внутреннего сгорания или электродвигателем.
При проектировании стационарных насосных станций целесообразно использовать насосные агрегаты, у которых насос агрегатирован с электродвигателем соответствующей мощности, имеющим необходимую частоту вращения.
При необходимости производят подбор электродвигателя к выбранному при проектировании насосу по потребляемой мощности на валу насоса и частоте вращения.
Для перекачивания светлых нефтепродуктов с температурой от минус 30 до плюс 50°С, вязкостью 0,55...60,00 мм2/с и плотностью не более 1000 кг/м3 применяются также электронасосы центробежные типа КМ.
Данные электронасосы предназначены для работы в местах, где по условиям работы возможно образование взрывоопасных смесей паров или газов с воздухом.
Пример условного обозначения электронасоса:
Электронасос КМ 100-80-170-5 У2 3631-120-05806720-99, где К - консольный; М - моноблочный; 100 - условный диаметр всасывающего патрубка, мм; 80 - условный диаметр напорного патрубка, мм; 170 - условный диаметр рабочего колеса, мм; 5 - условное обозначении вала; У - климатическое исполнение; 2 - категория размещения.
Для проектируемого нефтесклада выбираем электронасос типа КМ65-40-140
Таблица 6. Технические параметры электронасоса
Обозначение типоразмера электронасоса | Подача М3/ч(л/с) | Напор, м | Частота вращения | Мощность, кВт | Напряжение, В | Масса, кг |
КМ65-40-140 | 20(5,6) | 18 | 2900 | 2,2 | 380 | 60 |
Вместе с насосом заводы-изготовители, как правило, поставляют электродвигатель, часто смонтированный на одной плите. Мощность электродвигателя назначается выше, чем мощность насоса с некоторым коэффициентом запаса.
,
Где H-номинальный напор, м; Q- номинальная производительность, м3/ч; -плотность жидкости, кг/м3; Kз- коэффициент запаса, учитывающий случайные перегрузки двигателя (для нашего случая принимаем Kз=1,2); -коэффициент полезного действия насоса по паспортным данным, =0,70…0,75,
,
Где Г- гидравлический коэффициент полезного действия, Г=0,80…0,95; М- механический коэффициент полезного действия, М=0,95…0,98; О- объемный коэффициент полезного действия, О=0,90…0,98.
Дизельное топливо Вт=3,9 кВт
Бензин Вт=3,4 кВт
Диаметр трубопровода определяется по формуле, полученной из условия непрерывности потока жидкости:
Где Q- производительность перекачки, м3/ч, W-скорость течения жидкости в трубопроводе, м/с(для ориентировочных расчетов W=2 м/с).
м
Исходя из полученного расчетного значения принимаем стандартный диаметр трубопровода.
Таблица 7- характеристика трубопровода.
Наружний диаметр, мм | Номинальная толщина стенки, мм | Характеристика материала труб | Коэффициент надежности по материалу, К1 | ||
Марка стали | , МПа | , МПа | |||
60 | 4;5;6 | 20 | 431 | 255 | 1.55 |
Скорость течения жидкости при необходимости уточняем:
м/с
При проектировании трубопровода следует определить рабочее и испытательное давление, на основании чего выбрать толщину стенки трубы, которая определяется по формуле:
м=3 мм
Где Р- рабочее давление в трубопроводе, Па; dв- внутренний диаметр трубопровода, м, тек- нормативное значение коэффициента текучести металла, Па; к- коэффициент неоднородности, учитывающий отклонение качества металла и их основных размеров от установленных нормативных показателей, к=0,85…0,9, n- коэффициент перегрузки, учитывающий возможность повышения рабочего давления при эксплуатации трубопровода, n=1,1..1,2; m- Коэффициент условий работы, m=0.75…0,80.
Рабочее давление в трубопроводе равно максимальному давлению, создаваемому насосом. Если в паспортных данных насоса приведена величина напора в метрах, создаваемое им давление находится из выражения
,
МПа
Где - плотность нефтепродукта, кг/м3.
Определяем потери насоса во всасывающем трубопроводе по выражению
м
Где Нвс- потери напора во всасывающем трубопроводе, м; НТР- потери напора в трубах на трение, м; НМС- потери напора в местных сопротивлениях, м.
Потери напора на трение (гидравлические потери) определяются по формуле Дарси-Вейсбаха:
,
Где - коэффициент гидравлического сопротивления; LПР- геометрическая длина трубопровода; d-внутренний диаметр трубопровода, м; W- скорость течения жидкости в трубопроводе, м/с.
м
Местные потери напора вычисляют по формуле Вейсбаха, полученной на основании размерностей.
,
Где - коэффициент местного сопротивления, определяется в зависимости от узла сопротивления. Зависит от режима течения жидкости в трубопроводе и шероховатости внутренней стенки трубы.
Внезапное расширение
Внезапное сужение
м
Резкий поворот трубы
м
Обратный клапан
м
Плавный поворот трубы
м
Задвижка
м
Дроссельный затвор
м
м.
Режим течения жидкости в трубопроводе характеризуется критерием Рейнольдса Re рассчитаем для дизельного топлива:
,
Где - кинематическая вязкость перекачиваемого нефтепродукта, (для ориентировочных расчетов дт=0,003…0,005 м2/с).
м/с
При Re < 2000 имеет место ламинарный режим течения жидкости, и коэффициент гидравлического сопротивления находится из выражения
,
При 2000 < Re< 2800 имеет место переходный режим и коэффициент гидравлического сопротивления
,
При значениях Re > 2800 – турбулентный режим и значение коэффициента гидравлического сопротивления определяется по табличным данным.
Затем производится проверка бескавитационной работы всасывания по выражению
,
Где - допустимая вакуумметрическая высота всасывания, м; Нвс - потери напора во всасывающем трубопроводе, м;
Допустимая вакуумметрическая высота всасывания находится по паспортным данным насоса или рассчитывается по формуле:
,
Где На-минимальное атмосферное давление в районе нефтесклада, м; Ну - давление насыщенных паров перекачиваемого нефтепродукта при максимальной температуре окружающего воздуха, м; - коэффициент кавитационного запаса(=1,2..1,4); -потери напора при входе нефтепродукта на лопатки рабочего колеса, м;
м
Величины определяются из выражений:
,
м
и
,
м
где Ра, и Ру - атмосферное давление и давление насыщенных паров, соответственно (атмосферное давление Ра=101325 Па, давление насыщенных паров для дизельного топлива Ру=110000 Па, давление насыщенных паров для бензина Ру=67000 Па); - плотность нефтепродукта, кг/м3.
Величина потерь напора при входе на лопатки рабочего колеса определяется по формуле Руднева
,
м
Где n-частота вращения вала насоса, мин-1; Скр - кавитационный критерий подобия насоса.
Значения Скр определяются по паспортным данным или находятся в зависимости от коэффициента быстроходности насоса, который определяется по формуле:
;
об/мин
По результатам расчета делается вывод о невозможности бескавитационной работы насоса.
Гидравлический расчет трубопроводов заправочного пункта и автозаправочной станции производится в соответствии с изложенным выше. Если топливозаправочный пункт функционирует в составе нефтесклада, подача топлива в расходные резервуары производится стационарными или передвижными средствами перекачки склада. В этом случае проводится гидравлический расчет соответствующих трубопроводов.
Прокладку трубопроводов на территории нефтесклада можно осуществлять путем заглубления их в грунт или на поверхности земли. Наземная прокладка трубопроводов применяется в случаях невозможности их заглубления. При заглубленной прокладке минимальная глубина заложения трубопровода от верхней образующей составляет 0,8 м, а при наземной прокладке трубопровод устанавливается на опорах из несгораемого материала высотой 0,35...0,50 м.
Укладка заглубленного трубопровода в траншею производится на песчаное основание толщиной 0,2 м. Для запорной арматуры оборудуются колодцы размером 0,5x0,5. На подземные трубопроводы наносится противокоррозионная изоляция, а для наземных трубопроводов осуществляется изоляция между трубопроводом и опорами. Все трубопроводы, как подземные, так и наземные, защищаются от статического электричества путем устройства заземления через каждые 200 м их длины.
При проектировании трубопроводов следует соблюдать минимальное расстояние до зданий, сооружений и инженерных сетей, значения которых приведены в таблице 16.
При пересечении инженерных сетей расстояние по вертикали должно быть не менее: для электрокабелей, железнодорожных путей и автомобильных дорог -1м; для кабелей связи -0,5 м; для водопровода, канализации и теплосети - 0,2 м.
Вывод: насос и электродвигатель подобраны, верно.
... Таким образом, ТНВ « им. Димитрова » имеет зерново – молочную специализацию. ТНВ «им. Димитрова » - динамично развивающееся прибыльное хозяйство. В настоящее время предприятие имеет высокий уровень рентабельности, что очень важно для него. 2.2 Оценка организации нефтепродуктообеспечения Нефтебаза расположена на территории машинно-тракторного парка. Обеспечение нефтепродуктами осуществляется ...
... , что большая часть давно трудится на предприятие, что является положительным фактором, но в то же время предприятие не обеспечено молодыми кадрами, что может отрицательно сказаться на работе хозяйства. 3. Проектирование оптимизации численности и структуры работников аппарата управления СПК «Искра» Для оптимизации численности работников аппарата управления рассчитаем на основе штатных ...
... сельскохозяйственная академия" Инженерный факультет "УТВЕРЖДАЮ" Зав.кафедрой__________ Кафедра ____________ (подпись) (название) "___"______ 200 г. ЗАДАНИЕ на дипломное проектирование студента _________________________ 1. Тема: ___________________________________________________ утверждена приказом по академии №__от "__" ________ 200 г. 2. Срок сдачи студентом законченного проекта ...
... 3 ДТ-75М 2,7 6,4 21,4 17,1 10 3,5 6 0,6 7 3 4 МТЗ-80 2,7 6,9 19,8 3,5 8 2,8 7 0,7 7,5 3 5 Нива 5,1 6,6 - - 6 2,1 24 0,9 20,4 3 6 Дон-1500 3,6 7,2 - - 6 2,1 20,2 0,5 13 3 7 Енисей-1200 5,1 6,6 - - 6 2,1 26,9 0,7 22,7 3 2. Расчет программы технического обслуживания машинно-тракторного парка Определим годовой расход топлива по маркам ...
0 комментариев