6.2 Расчет статической прочности вала
На основании эпюр можно сделать следующие выводы.
Опасными сечениями для рассматриваемого вала, которые необходимо проверить на прочность, являются сечения: (z = 0), как наименее жесткое при кручении dВ1 = 38 мм, а также сечения (z = a) и (z = a + b), где действуют наибольшие изгибающие моменты.
В сечении (z = 0) находится еще и шпоночный паз, ослабляющий его жесткость. Сечение (z = a), где действует изгибающий момент:
Ма = = = 25,8 Н·м
И крутящий момент Мz = 34,43 Н·м, находится в сложном напряженном состоянии и при этом имеет диаметр, незначительно превышающий наименьший. В сечении (z = a + b) изгибающий момент достигает величины:
Ма + b = = = 24,5 Н·м
Рассчитаем наибольшие напряжения в опасных сечениях.
В сечении (z = 0) нормальные напряжения от осевых сил и изгибающих моментов равны нулю, касательные напряжения τmax определяются крутящим моментом
Мz = 34,43 Н·м и полярным моментом сопротивления сечения Wp цилиндрического конца вала со шпоночным пазом, глубиной t1 = 5 мм.
Wp = - = - = 10052 мм3
Тогда наибольшие касательные напряжения:
τmax= Мz / Wp = 34,43 / 10052 · 10-9 = 3,4 МПа,
а условие прочности вала в сечении (z = 0):
τmax= 3,4 МПа ≤ [τ]k = 44 МПа
выполняется.
В сечении (z = a) наибольшие нормальные напряжения определяются величиной изгибающего момента Ма = 25,8 Н·м и моментом сопротивления сечения вала.
Wa = = = 12266 мм3
σmax = Ма / Wa = 25,8 / 12266 · 10-9 = 2,1 МПа,
а наибольшие касательные напряжения этого сечения с полярным моментом:
Wp = = = 24532 мм3, равны:
τmax= Мz / Wp = 34,43 / 24532 · 10-9 = 1,4 МПа
В качестве допустимых напряжений на изгиб примем:
[σ] = 0,8 · σT = 0,8 · 440 = 352 МПа
При этом условие статической прочности по приведенным напряжениям выполняется.
σпр = = = 3,2 МПа ≤ [σ] = 352 МПа,
В сечении (z = a + b) рассчитаем аналогично, с учетом того, что наибольшие нормальные напряжения определяются величиной изгибающего момента
Ма + b = 24,5 Н·м и моментом сопротивления сечения вала (с диаметром шестерни по впадинам):
Wa = = = 20670 мм3
σmax = Ма + b / Wa = 24,5 / 20670 · 10-9 = 1,2 МПа
Wp = = = 41340 мм3
τmax= Мz / Wp = 34,43 / 41340 · 10-9 = 0,8 МПа
Условие статической прочности по приведенным напряжениям выполняется.
σпр = = = 1,8 МПа ≤ [σ] = 352 МПа,
6.3 Уточненный расчет прочности вала
Определим усталостные характеристики материала вала – шестерни, изготовленной из стали 45 с улучшением (σт = 440 МПа, σв = 780 МПа). При симметричном цикле (R = -1) имеем:
σ-1 = 0,43 · σв = 0,43 · 780 = 335,4 МПа
τ-1 = 0,6 · σ-1 = 0,6 · 335,4 = 201,2 МПа
При пульсационном цикле (R = 0) имеем:
σ0 = 1,6 · σ-1 = 1,6 · 335,4 = 536,6 МПа
τ0 = 1,6 · τ-1 = 1,6 · 201,2 = 321,9 МПа
Рассчитаем коэффициенты, отражающие соотношение пределов выносливости при симметричном и пульсирующем циклах соответственно изгиба и кручения:
ψσ = (2 · σ-1 - σ0) / σ0 = (2 · 335,4 – 536,6) / 536,6 = 0,25
ψτ = (2 · τ-1 - τ0) / τ0 = (2 · 201,2 – 321,9) / 321,9 = 0,25
Из графика [3] определим коэффициенты влияния абсолютных размеров:
- в сечении (z = 0) при dв1 = 38 мм получим εσ = ετ = 0,82
- в сечении (z = а) при dп1 = 50 мм получим εσ = ετ = 0,77.
Зададим коэффициенты шероховатости [3] в зависимости от шероховатости поверхности Ra:
- в сечении (z = 0) при Ra = 1,25 получим kσn = kτn = 1,1
- в сечении (z = а) при Ra = 2,5 получим kσn = kτn = 1,2.
Эффективные коэффициенты концентрации напряжений определим из графика [1]:
- в сечении (z = 0) для концентратора в виде шпоночного паза имеем эффективные коэффициенты концентрации при изгибе и кручении соответственно
kσ = 2,3 и kτ = 2,1.
- в сечении (z = а) для концентратора в виде посадки с гарантированным натягом подшипника на вал имеем:
kσ / εσ = 3,9; kτ / ετ = 1 + 0,6(kσ / εσ – 1) = 1 + 0,6 · 2,9 = 2,74
Примем коэффициент упрочнения в расчетных сечениях равным kу = 1, поскольку поверхность вала не упрочняется. Рассчитаем коэффициенты перехода:
- для сечения (z = 0):
kσD = (kσ / εσ + kσn – 1) / kу = (2,3 / 0,82 + 1,1 – 1) / 1 = 2,9
kτD = (kτ / ετ + kτn – 1) / kу = (2,1 / 0,82 + 1,1 – 1) / 1 = 2,66
- для сечения (z = a):
kσD = (kσ / εσ + kσn – 1) / kу = (3,9 + 1,2 – 1) / 1 = 4,1
kτD = (kτ / ετ + kτn – 1) / kу = (2,74 + 1,2 – 1) / 1 = 2,94
Определим коэффициенты долговечности kСσ и kСτ [3]. Для этого рассчитаем эквивалентное число циклов при наибольшем значении показателя степени m = 9:
NΣ = 60 · n1 · tΣ · = 60 · 960 · 11600 · (19 · 0,1 + 0,89 · 0,25 + + 0,69 · 0,65) = 5,3 · 106
Коэффициент долговечности: kСσ = = 0,96 < 1, следовательно,
kСσ = kСτ = 1.
Поскольку вал не испытывает осевой нагрузки, то будем считать, что нормальные напряжения, возникающие в поперечном сечении вала, изменяются по симметричному циклу, т.е. σm = 0, амплитуда цикла нормальных напряжений равна наибольшему номинальному напряжению изгиба, соответственно: для сечения (z = 0), σa = 0 МПа; для сечения (z = a), σa = σmax = 2,1 МПа
Исходя из неблагоприятных условий примем, что напряжения кручения изменяются по нулевому (пульсирующему) циклу, тогда:
- для сечения (z = 0) τа = τm = τmax / 2 = 3,4 / 2 = 1,7 МПа;
- для сечения (z = a) τа = τm = τmax / 2 = 1,4 / 2 = 0,7 МПа.
Тогда коэффициент запаса прочности по касательным напряжениям для сечения
(z = 0):
nτ = τ-1 / ((kτD / kСτ) · τа + ψτ · τm) = 201,2 / (2,66 · 1,7 + 0,25 · 1,7) = 40,7
Для сечения (z = a) коэффициент запаса прочности определим по нормальным и касательным напряжениям соответственно:
nσ = σ-1 / ((kσD / kСσ) · σa + ψσ · σm) = 335,4 / (4,1 · 2,1) = 39
nτ = τ-1 / ((kτD / kСτ) · τа + ψτ · τm) = 201,2 / (2,94 · 0,7 + 0,25 · 0,7) = 90,1
Окончательно получим для сечения (z = a):
n = (nσ · nτ) / = (39 · 90,1) / = 35,8
Поскольку допускаемые значения коэффициента запаса принимают [n] = 1,5 – 2, то условие достаточной прочности n ≥ [n] выполняется.
7 Подбор подшипников качения
Определим ресурс:
Тихоходный вал:
L = (tΣ · 60 · n) / 106 = (11600 · 60 · 435) / 106 = 302,8 млн. об.
Быстроходный вал:
L = (tΣ · 60 · n) / 106 = (11600 · 60 · 960) / 106 = 668,2 млн. об.
Подсчитаем эквивалентные нагрузки:
Р = V · Rp · Кб · Кт
V = 1 – вращается внутреннее кольцо;
Кб = 1,3 - 1,5 – коэффициент безопасности;
Кт = 1 – температурный коэффициент;
Rp – силы возникающие в подшипнике.
Для быстроходного вала:
Р = 1 · 1029 · 1,5 · 1 = 1544 Н
Для тихоходного вала:
Р = 1 · 574 · 1,5 · 1 = 861 Н
Динамическая грузоподъемность:
С = Р , где:
а1 = 1 – коэффициент надежности,
а2 = 0,7 - 0,8 – обобщенный коэффициент.
Для быстроходного вала:
С = 1544 = 1551 Н
Для тихоходного вала:
С = 861 = 867 Н
Для быстроходного вала: dп1 = 50 мм, С = 1551 Н, берем подшипник средней серии №310 (С = 61800 Н). [2]
Для тихоходного вала: dп1 = 35 мм, С = 867 Н, берем подшипник легкой серии №207 (С = 25500 Н). [2]
Список использованной литературы
1. Курсовое проектирование деталей машин. /Под общ. ред. В. Н. Кудрявцева. – Л.: Машиностроение, 1984. – 400с.
2. Анурьев В. И. Справочник конструктора – машиностроителя. М.: Машиностроение. 1979. Т. 1-3.
3. Кудрявцев В. Н. Детали машин. Л.: Машиностроение, 1980. 464 с.
4. Гжиров Р. И. Краткий справочник конструктора. – Л.: Машиностроение. 1983. – 464 с.
... – проектный (приближенный) расчет валов на чистое кручение , 2-й — проверочный (уточненный) расчет валов на прочность по напряжениям изгиба и кручения. 1. Определение сил в зацеплении закрытых передач. В проектируемых приводах конструируются червячные редукторы с углом профиля в осевом сечении червяка 2а = 40° .Угол зацепления принят α= 20°. а) на колесе: 1.1 Окружная сила Ft2, Н: Ft2= где T2 ...
... 2. Тип элементов, входящих в изделие и количество элементов данного типа; 3. Величины интенсивности отказов элементов , входящих в изделие. Все элементы схемы ячейки 3 БУ привода горизонтального канала наведения и стабилизации ОЭС сведены в табл. 13.1. Среднее время безотказной работы блока можно рассчитать по формуле: (13.5) где L - интенсивность отказов БУ следящего привода. ...
... по программе, устанавливаемой техническими условиями. Заключение По данным задания на курсовой проект спроектирован привод к скребковому конвейеру, представляющий собой электродвигатель, двухступенчатый цилиндрический косозубый редуктор и сварную раму. В процессе проектирования подобран электродвигатель, произведён расчёт редуктора. Расчёт редуктора включает в себя кинематические расчёты ...
... (3) Угловая скорость выходного вала III тогда составит рад/с, а вала электродвигателя I – рад/с. Общее передаточное отношение привода получится равным: . (4) Для дальнейшего проектирования необходимо произвести распределение передаточного отношения между ремённой передачей и редуктором. Назначаем передаточное отношение редуктора равным ...
0 комментариев