3. Расчет зубчатой передачи
3.1 Выбор материалов и допускаемых напряжений
Тб = 160 - улучшение
По табл. П 13 с.72 [1], выбираем для изготовления зубчатых колес сталь.
Сталь 40Х
Назначаем твердость по табл. П 13 с.72 [1]
HB=340
Допускаемые контактные напряжения шестерни и колеса.
σн1 = (σнlimb1*kнσ1) / Sн
σн2 = (σнlimb2*kнσ1) / Sн, где
Sн – коэффициент запаса, определяется по табл. П 13 с.72 [1]
Sн = 1.1
σнlimb – базовый предел контактной выносливости, определяется по табл. П13 с.72 [1]
σнlimb1(2) = 750мпа
σн1(2) = 612мпа
kнσ1(2) = 6√Nно1(2) / Nнe1(2), где
Nно – базовое число циклов, определяется по рис. 4.1а с.13 [1] в зависимости от твердости.
Nнe – практическое число циклов
Nнe1(2) = 60*n1(2)*10³*L(k³max*lmax + k³1*l1 + k³2*l2 + k³3*l3), где
L – срок службы редуктора
lmax = 0,005
k1 = 1; k2 = 0.6; k3 = 0.4
l1 = 0.4; l2 = 0.2; l3 = 0.3
Nнe1 = 60*569*10³*20*(2³0.005 + 1³*0.4 + 0.6³*0.2 + 0.4³*0.3) = 340000000
ki = Ti / Tн
Т.к. Nнe1(2) > Nно1(2) , то kнσ1(2) = 1
Определяем допускаемое расчетное контактное напряжение.
[σ]н = (σн1 + σн2)*0,45
[σ]н = (682+682)*0,45 = 584
Определяем допускаемые напряжения изгиба
[σ]f1 = σf*limb1*kfl1 / Sf [σ]f1 = 682*1 / 1.55 = 350
[σ]f2 = σf*limb2*kfl2 / Sf [σ]f2 = 682*1 / 1.55 = 359
3.2 Проектный расчет зубчатых передач
Определяем межцентровое расстояние из условия контактной прочности рабочей поверхности зубъев.
aw ≥ 430*(Uз + 1) 3√ T2*kнβ / [σ]²н*ψва*U²з,где
kнβ – коэффициент неравномерного распределения нагрузки по ширине зубьев;
kнβ = 1,05÷1,15;
ψва – коэффициент ширины зубчатого колеса;
ψва = 0,1÷0,6
aw ≥ 430*(3,5 + 1) 3√ 160*1,15 / (682)²*0,5*3,5² = 112
Значение aw выбираем из ряда:
90; 100; 112; 125; 140; 160; 180.
аw = 112мм
Определяем модуль зацепления
m = 2мм так как улучшение по ряду на с.16
Определяем суммарное число зубьев шестерни и колеса.
zΣ = 2*aw*cosβ’ / m, где
cosβ’ = 0,96÷0,98
cosβ’ = 0,98
zΣ = 2*112*0,98 / 2 = 110
Уточняем угол наклона зубьев.
cosβ = m* zΣ / 2aw
cosβ = 2*110 / 2*112= 0,982
β° = arcos(cosβ)
β° = 10.9°
Находим число зубьев шестерни:
z1 = zΣ / (Uз + 1)
z1 = 110/ (3,5 + 1) = 24.45
Полученное число округляем до ближайшего целого z1≈25
z2 = zΣ - z1
z2 = 110 – 25 = 85
Уточняем передаточное число:
U’з = z2 / z1
U’з = 85 / 25 = 3,4
Погрешность составляет:
δ = (Uз - U’з) / Uз * 100%
δ = (3.5 – 3.5) / 3.5 *100% = 2.86%
Определяем начальные диаметры зубчатых колес:
dw1 = m*z1 / cosβ
dw1 = 2*25/0.98 = 50
dw2 = m* z2 / cosβ
dw2 = 2*85/0.98 =174
Проверка:
аw = (dw1 + dw2) / 2
аw = (50 + 174) / 2 = 112 (верно)
Определяем диаметры окружностей выступов колес:
da1 = dw1 + 2m(1 + x1)
da1 = 50 + 2*2*(1) = 54
da2 = dw2 + 2m(1 + x2)
da2 = 174 + 2*2*(1) = 178
Определяем диаметры окружностей впадин колес:
df1 = dw1 - m(2.5 - 2x1)
df1 = 50 – 2*(2.5) = 45
df2 = dw2 - m(2.5 - 2x2)
df1 = 178 – 2*(2.5) = 173
Определяем ширину зубчатых колес:
B1 ≥ ψbа*аw
B1 ≥ 0.5*112 = 56
B2=B1+(4-6)=56+4=60
Определим линейную скорость колес:
V = (π* dw1*n1) / (60*1000)
V = (3.14*50*569 / 60000 = 1.5 [м/с]
По табл. П 14 с. 73 [1], назначаем степень точности изготовления колес – 8
Определяем силы в зацеплении
окружные силы
Ft = - Ft = (2000*T1) / dw1
Ft = - Ft = (2000*50) / 50 = 2000 [H]
радиальные силы
Fr = - Fr1 = Ft*tgα / cosβ
Fr = - Fr1 = 2000*0.363 / 0.98 = 739 [H]
Fr1 = 6330.8 [H]
осевые силы
Fa1 = - Fa2 = Ft*tgβ
Fa1 = - Fa2 = 2000*tg11° = 383 [H]
3.3 Проверочные расчеты зубчатой передачи
3.3.1 Определяем фактических контактных напряжений
σн = zм*zн*zε*√[(2000*T1*kнβ*kнv) / d²w2*b] * [(U’з + 1) / U’з] ≤ [σ]н
где zм – коэффициент, учитывающий механические свойства материала колес. Для стали zм = 275;
zн – коэффициент, учитывающий форму сопрягаемых эвольвент
zн = 1,76*√cosβ = 1.76
zε – коэффициент, учитывающий перекрытие
zε = √ 1 / εα, где εα – коэффициент торцевого перекрытия
εα = [1.88 – 3.2(1-x1/z1 + 1+x2/z2]*cosβ
εα = [1.88 – 3.2 (1/25 + 1/110]*0.98 = 1.73
zε = √1/1.73 = √0.76
kнβ – коэффициент неравномерного распределения нагрузки по ширине зуба, определяется по рис. 4.2а с.21 [1], в зависимости от коэффициента ширины колеса.
kнβ = 1,2
kнv – динамический коэффициент, определяется по табл. П16 с. 74 [1]
kнv = 1,01
σн = 275*1,76*0,76*√[(2000*50*1.09*1.01) / 50²*60] * [(3.4 + 1) / 3.4] = 371.3 < [σ]н
3.3.2 Определяем фактических напряжений изгиба
Определяем коэффициент формы зубьев шестерни и колес.
YF1 YF2 из рис.4.3 с.21 [1], в зависимости от эквивалентного числа зубьев колес.
zv1 = z1 / cos³β = 25
zv2 = z2 / cos³β = 85; => YF1 = 3.98 YF2 = 3.72
Фактическое напряжение изгиба для более слабого колеса
σF2 = Ft*YF2*kFβ*kFV*Yβ / b*m ≤ [σ]F2 = 483.9, где
kFβ – коэффициент неравномерности распределения нагрузки по ширине зуба, определяется по рис. 4а с.20 [1]
kFβ = 1,15
kFV – определяется по табл. П 16 с. 74 [1]
kFV = 1, 1
Yβ – коэффициент наклона контактной линии
Yβ = 1 – (βº / 140) = 1 – (11 / 140) = 0.92
[σ]F1 = (2000*3,98*1,15*1, 1*0,92) / 56*2 = 100
[σ]F2 = 88
4. Конструирование основных деталей редуктора
4.1 Конструирование валов
4.1.1 Ведущий вал
Определяем диаметр хвостового вала из условия кручения.
db1 ≥ 10 3√ T1 / 0.2*[τ], где
τ – допускаемое напряжение кручения
[τ] = 18÷28
db1 = 22мм
Назначаем диаметр уплотнения
dy1 > db1
dy1 = 25
По табл. П 41 с. 94 [1], выбираем манжету резиновую армированную
D = 42; h = 10
Назначаем диаметр под подшипник
dп1 > dy1
По табл. П 20 с. 79 [1] выбираем шариковый радиально упорный подшипник легкой серии (по внутреннему диаметру)
dп1 = 30; D = 62; B = 16;
Назначаем диаметры буртов
dб1 = dп1 + 2r
dб1 = 40
4.1.2 Ведомый вал
По табл. П 17 с. 75 [1], выбираем соединительную муфту МУВП, в зависимости от крутящего момента на ведомом валу.
Т2 = 160
Тм ≥ Т2
Тм = 240
Назначаем диаметр хвостовика вала, db2 равен внутреннему диаметру муфты
db2 = 32мм
По табл. П 41 с. 91 [1], выбираем уплотнения, таким образом, чтобы:
d > db2
d = 52; D = 72; h = 12
Назначаем манжету резиновую армированную
d=35 D = 58 h = 10
Назначаем диаметр под подшипник
dп2 > dy2
dy2 = 35 D = 58 h = 10
dп2 = 40;
По табл. П 20 с. 79 [1], выбираем радиально упорный шарикоподшипник:
D = 80; B = 18
Определяем диаметр вала под зубчатым колесом
dk = dп2 + 2*r
dk = 40 + 2*3 = 46
dб2 = dk + 2÷4
dб2 = 50
4.2 Расчет шпоночных соединений
4.2.1 Шпонка ведущего вала
По табл. П 18 с. 77 [1], выбираем габариты шпонки, в зависимости от диаметра хвостовика вала db1
Т.к. db1 = 22 => b = 8; h = 7; t1 = 4; t2 = 3.3
Определяем рабочую длину шпонки из условия прочности на смятие:
lp1 ≥ (2000*T1) / db1*[σ]см*(h – t1), где
[σ]см – допускаемое напряжение смятия
[σ]см = 80÷160 [Н/мм²]
lp1 ≥ 2000*50 / 22*130*(7 – 4) = 11.65
Требуемая длина шпонки
l'ш1 ≥ lp1 + b
l'ш1 ≥ 11.65+8
l'ш1 =19.65
По табл. П 18 с. 77 [1], выбираем:
lш ≥ l'ш1
lш = 20
4.2.2 Расчет шпонки ведомого вал
По табл. П 18 с. 77 [1], выбираем габариты шпонки, в зависимости от диаметра вала под ведущим колесом dk
dk = 46 => b = 14; h = 9; t1 = 5.5; t2 = 3.8
Определяем рабочую длину шпонки:
lp2 ≥ (2000*T2) / dк*[σ]см*(h – t1)
lp2 ≥ 2000*160 / 46*130*(9 – 5.5)
lp2 ≥ 17.64
Требуемая длина шпонки
l'ш2 ≥ lp2 + b
l'ш2 ≥ 17.64+14
l'ш2 ≥ 31.64
По табл. П 18 с. 77 [1], выбираем:
lш2 ≥ l'ш2
lш2 = 32
Шпонка под муфту
db2 = 32мм
b = 10; h = 8; t1 = 5; t2 = 3.3
lp2 = 25.65
lш2 =25.65 +10 =35.65
lш2 = 36
Выбор муфты
Т2 = 160 выбираем размеры муфты по табл. П17 СТР 75:
d = 32; D = 140; D1 = 130; D0 = 100; D3 = 27; d1 = 70; L = 165; L1 = 80; L2 =66; l1 = 32; l2 = 35; l3 = 20; l = 16; b = 5; dп =14; dp = М10;
4.3 Конструирование зубчатого колеса
Высота головки зуба ha = m hf = 1.25 m ; m = 2;
Диаметры вершин зубьев
da1(2) = d1(2) +2m(1+x); da1 = 54; da2= 178;
df = d1(2) – 2m(1.25-x); df1 = 45; df2 = 170;
lст1(2) = (1:1.5) dk1(2); lст1 = 69; lст2 = 54;
4.4 материалы и выбор типа смазывания
В среднескоростных передачах, не имеющих герметичных картеров, можно применять пластичное внутришарнирное или капельное смазывание. Пластичное внутришарнирное смазывание осуществляют периодическим, через 120...180 ч, погружением цепи в масло, нагретое до температуры, обеспечивающей его разжижение. Пластичный смазочный материал применим при скорости цепи до 4 м/с, а капельное смазывание - до 6 м/с. В передачах с цепями крупных шагов предельные скорости для каждого способа смазывания несколько ниже. При периодической работе и низких скоростях движения цепи допустимо периодическое смазывание с помощью ручной масленки (через каждые 6...8 ч). Масло подается на нижнюю ветвь у входа в зацепление со звездочкой. При капельном ручном, а также струйном смазывании от насоса необходимо обеспечивать распределение смазочного материала по всей ширине цепи и попадание его между пластинами для смазывания шарниров. Подводить смазку предпочтительно на внутреннюю поверхность цепи, Откуда под действием центробежной силы она лучше подается к шарнирам. В зависимости от нагрузки для смазывания цепных передач применяют масла индустриальные И-Г-А-46...И-Г-А-68, а при малых нагрузках Н-Г-А-32.
Для ответственных силовых передач следует по возможности применять непрерывное картерноё смазывание видов:
а) окунанием цепи в масляную ванну, причем погружение цепи в масло в самой глубокой точке не должно превышать ширины пластины; применяют до скорости цепи 10 м/с во избежание недопустимого взбалтывания масла;
б) разбрызгивание с помощью специальных разбрызгивающих выступов или колец и отражающих щитков, по которым масло стекает на цепь, применяют при скорости 6...12 м/с в случаях, когда уровень масла в ванне не может быть поднят до расположения цепи;
в) циркуляционное струйное смазывание от насоса, наиболее совершенный способ, применяют для мощных быстроходных передач;
г) циркуляционное центробежное с подачей масла через каналы в валах и звездочках непосредственно на цепь; применяют при стесненных габаритах передачи, например, в транспортных машинах;
д) циркуляционное смазывание распылением капель масла в струе воздуха под давлением; применяют при скорости более 12 м/с.
В данном случае мы выбрали непрерывное картерное смазывание с непосредственным окунанием в масляную ванну
... *0,72*0,992=3,764 кВт; Р4=Р3 η3=5,124*0,95=3,576 кВт, что близко к заданному. Определяем вращающие моменты на каждом валу привода по формуле (Нм) (2.5) ; ; ; . Все рассчитанные параметры сводим в табл.1. Таблица 1 Параметры кинематического расчета № вала n, об/мин ω, рад/с Р, кВт Т, Нм U Дв. (1) 1444,5 151,27 5,5 36,35 2 ...
... – проектный (приближенный) расчет валов на чистое кручение , 2-й — проверочный (уточненный) расчет валов на прочность по напряжениям изгиба и кручения. 1. Определение сил в зацеплении закрытых передач. В проектируемых приводах конструируются червячные редукторы с углом профиля в осевом сечении червяка 2а = 40° .Угол зацепления принят α= 20°. а) на колесе: 1.1 Окружная сила Ft2, Н: Ft2= где T2 ...
... Uред.ст = 5,6. Уточним полученное значение передаточного отношения клиноременной передачи: Uкл.рем.ст. = Uпр / Uред.ст. = 10,8 / 5,6 = 1,93 Определим значения мощности на каждом из валов привода конвейера. Мощность на выходном валу электродвигателя (кВт) определяется по формуле (9). Ртреб.эл. = Ррем1 = 8,87 кВт (9) Мощность на входном валу ...
... по программе, устанавливаемой техническими условиями. Заключение По данным задания на курсовой проект спроектирован привод к скребковому конвейеру, представляющий собой электродвигатель, двухступенчатый цилиндрический косозубый редуктор и сварную раму. В процессе проектирования подобран электродвигатель, произведён расчёт редуктора. Расчёт редуктора включает в себя кинематические расчёты ...
0 комментариев