2.3. Расчет основных коэффициентов.

ap=, где а12=0,009м (табл.1),

k=0,53 ·1,25 (табл. 3,3 [1]),

SI=210 кВА – мощность на один стержень,

ap=мм –

ширина приведенного канала рассеяния.

Kp=0,95 - коэффициент Роговского, приводит идеализированного поля рассеяния к реальному.

При анализе влияния коэффициента β на основные параметры трансформатора, было выявлено, что оптимальным, с точки зрения минимизации потерь, является значение β = 1,326. Значение всех коэффициентов и величин при β = 1,0, 1,326, 1,5, 1,8 приведены в таблице 3. Окончательное значение коэффициента было скорректировано так, чтобы диаметр стержня d=0,19м.

Таким образом, принимаем: β = 1,326.

x=

,

где f - частота сети;

400,246 кг, где а = 1,4 · 1,06 (по табл.3.4 [1]);

= 29,1 кг, где l0=0,03м (табл.1);

198,43 кг, где b=0,4·1,25 (по табл.3.5 [1]);

=10,736кг;

K0=1,2×10-2 - для алюминия (стр. 132 [1]);

264.769 кг,


где kд = 0,93 – коэффициент добавочных потерь (по табл.3.6 [1]);

41,811;

 МПа;

2.4. Масса стержней:

Gc==406,494 кг;

2.5. Масса ярем:

Gя=257,56 кг;

2.6. Масса стали:

Gcт=Gc+Gя = 406,494+257,56=664,053 кг

2.7. Определим потери холостого хода (по пункту 8.2 [1]):

Активные потери в стали:

Pх=kпт·kпи·pс·Gст , где kпт= 1,06 – коэффициент, учитывающий технологические факторы;

kпи=1,33 – коэффициент, учитывающий искажение

формы кривой магнитного потока и индукции;

pc=1.080 Вт/кг – удельные потери в стали 3406 при индукции 1,6 Тл;

Pх=kпт·kпи·pс·Gст = 1,06·1,33·1,080·664,053=1011 Вт, что составляет примерно 78% от заданного значения (1011·100/1300 = 77,77%);

2.8. Полная намагничивающая мощность:

Qx=kтт·kти·qc·Gcт , где kтт=1,15 –коэффициент, учитывающий несовершенство

технологии и отжига;

kти=1,50 – коэффициент, учитывающий искажение

формы кривой магнитной индукции;

qc=1.560 ВА/кг – полная удельная намагничивающая

мощность в стали 3406 при индукции 1,6 Тл;

Qx=kтт·kти·qc·Gcт=1,15·1,50·1,560·664,053=1787 ВА;

2.9. Относительное значение тока холостого хода:

i0= 0,284%,

что составляет примерно 18,9% от заданного значения (0,284·100/1,5 = 18,933%);

i0a= 0,16% -

активная составляющая тока холостого хода.

2.10. Масса обмоток:

Gо=  кг - масса металла обмоток;

Gпр=1,13·Go=1,13·229,93=259,82 кг - масса провода с изоляцией;


2.11. Плотность тока в обмотках:

J= 1.511 A/мм2, где k1=12,75 – для алюминия;

2.12. Растягивающее напряжение в проводе обмотки:

σ=М·х3=6,435·1,0733=7,952 МПа;

2.13. Диаметр стержня:

d=A·x=0,177·1,073=0,19 м;

2.14. Расстояние между стержнями:

С=a·A·x+a12+a22+b·A·x=1,484·0,177·1,073+0,009+0,01+0,5·0,177·1,073= =0,396 м;

2.15. Высота обмотки:

Lo= 0,668 м;

2.16. Сечение стержня:

Пс= =0,024 м2;


2.17. Сечение ярма:

Пяс/2=0,012 м2;

2.18. Напряжение витка:

uv=4,44·f·Вс·Пс=4,44·50·1,6·0,024=8,644 В;

2.19. Относительная стоимость активных материалов:

Сакт=kос·Gпр+Gст=1,61·259,82+664,053=1082.

2.20. Сведем полученные значения в таблицу 3:

Таблица 3. Предварительный расчет трансформатора типа ТМВГ-630/6, с навитой пространственной магнитной системой и алюминиевыми обмотками.

β 1,0 1,2 1,326 1,5 1,8

x=

1,000 1,047 1,073 1,107 1,158

400,246 382,412 372,985 361,663 345,548

А2·х2=29,1·х2

29,100 31,877 33,509 35,64 39,041

Gc= + А2·х2

429,346 414,289 406,494 397,303 384,590

B1·x3=198,43·х3

198,430 227,506 245,197 268,953 308,363

B2·x2=10,736·х2

10,736 11,760 12,363 13,149 14,404

Gя= B1·x3+ B2·x2

209,166 239,267 257,560 282,101 322,766

Gcт=Gc+Gя

638,512 653,556 664,053 679,404 707,356

Pх=1,06·1,33·1,080·Gст

972,19 995,10 1011,00 1034,00 1077,00

Qx=1,15·1,5·1,560·Gcт

1718 1759 1787 1828 1903

i0=

0,273 0,279 0,284 0,290 0,302

Gо=

264,769 241,700 229,930 216,183 197,347

Gпр=1,13·Go

299,189 273,121 259,820 244,287 223,002

Сакт=kос·Gпр+Gст

1120 1093 1082 1073 1066

J=

1,408 1,474 1,511 1,559 1,631

σ=М·х3=6,435· х3

6,435 7,378 7,952 8,722 10,000
d=A·x=0,177·х 0,177 0,185 0,190 0,196 0,205

Lo=

0,825 0,720 0,668 0,609 0,531

С=a·A·x+a12+a22+b·A·x

0,370 0,387 0,396 0,408 0,426

Проанализируем таблицу. Допуск на потери холостого хода +7,5%, на значение тока холостого хода +15%, рекомендованная плотность тока 1,2-2,5 А/мм2, допустимое σ=25 МПа. Перечисленные величины, при взятых выше β лежат в пределах допусков.

Целью данного проекта является расчет трансформатора, имеющего минимальные потери на ХХ и минимальный расход стали. Однако должна также учитываться масса обмоток и стоимость активных материалов. В связи с этим, считаю оптимальным значение β равным примерно 1,3-1,4. Примем диаметр стержня равным 0,19м и получим β=1,326. Дальнейший расчет трансформатора ведем с применением этого значения.

3. Расчет обмотки низкого напряжения.

Для удобства расчетов примем высоту обмоток Lo=0,665м, тогда значение β=1,332.


3.1 Число витков обмотки НН:

WHH= витков, округлим полученное число до целого:

WHH=46

Тогда: uv= =8,66 В;

3.2. Сечение витка:

ПНН= =348,8 мм2;

Выбираем тип обмотки из алюминиевой ленты, шириной 665мм и толщиной b=0,5мм, сечением ПННВ=332,5 мм2;

3.3. Плотность тока:

JНН=1,585 А/мм2;

Принимаем плотность теплового потока на поверхности обмотки:

 q=1000 Вт/м2;

3.4. Максимальный радиальный размер катушки обмотки:

bp=0,0185 м, где k3=0,8 для цилиндрических обмоток;


В этот размер можно уложить не более 37 витков. Разбиваем обмотку на две катушки по w=23 витка в каждой с изоляцией из кабельной бумаги К-120 и охлаждающим каналом, между катушками 6мм.

3.5. Радиальный размер обмотки:

Размер одной катушки:

23·0,5+22·0,12=14,14 мм

Итак, радиальный размер обмотки примерно d1 = 34мм.

3.6. Внутренний и внешний диаметры обмоток:

D1внутр=d+2·а01=0,19+2·0,005=0,200м;

D1внеш= D1внутр +2·d1=0,20+2·0,034=0,268 м.

3.7. Плотность теплового потока:

qHH= =663,168Вт/м2, где k3 – коэффициент закрытия поверхности,

kД – коэффициент добавочных потерь, определен в пункте 5.2.1.

3.8. Масса алюминиевой ленты и изоляции:

Основываясь на эскизе обмотки НН (рис. 2) определим массу алюминия и кабельной бумаге (плотность алюминия γА=2700 кг/м3, а бумаги γбум= 750 кг/м3):

Объем алюминия и изоляции:

Vал=11250 мм2;

Vбум=2595 мм2;


Масса алюминия и изоляции:

GHH=3· Vал · γА =3·11250·2700=91,1 кг;

Gизол=3· Vбум· γбум=3·2595·750=5,8 кг.

рис.2. Структура обмотки НН.

С торцов обмотки кабельная бумага выступает на 10мм, к этим частям бумаги приклеиваются ленты картона, для придания жесткости торцевым частям обмотки и дополнительной изоляции.

4. Расчет обмотки высокого напряжения.

Обмотка ВН соединена в треугольник, соответственно регулировочные витки располагаем в середине (рис.3) катушки, так как при другом расположении витков контакты переключающего устройства попадают под номинальное напряжение. С учетом этого обстоятельства возможно применение только непрерывной катушечной обмотки (в случае применения механического переключателя).

Обмотку выполняем из прямоугольного алюминиевого провода марки АПБ.


4.1. Число витков при номинальном напряжении:

WВH=витков;

Округлим: WВH=727 витков.

4.2. Число витков на одной ступени регулирования (+/- 5%):

N=UВНф·0,05=6300·0,05=315

wp=36 витков

4.3. Число витков на 5 ступенях регулирования:

Напряжение, В Число витков
6612

727+36=763

6456

727+0,5·36=745

6300

727

6144

727-0,5·36=709

5988

727-36=691

4.4. Плотность тока в обмотке ВН:

JВН=2·J-JHH=2·1,511-1,585=1,437

4.5. Сечение витка:

ПВН=23,191 мм2;


Выбираем (по табл.5.2 [1]):

АПБ сечением ПВН =20,8мм2.

4.6. Уточненная плотность тока в обмотке ВН:

JВН =1,602 А/мм2.

4.7. Число катушек:

nкат= 44,04 катушки, где

b/ - ширина провода с изоляцией, м;

hk – осевой канал между катушками, м.

Принимаем nкат=43.

4.8. Число витков в катушке:

W =, принимаем 18.

4.9. Данные катушек:

Таблица 4. Данные катушек обмотки ВН

Данные Условные обозначения катушек Всего
А Б В
Назначение катушки Основная Основная Регулир. -
Число катушек 11 26 6 43
Число витков в катушке 17 18 18 -
Всего витков 187 486 108 763

Радиальный размер, ap, мм

45* 45 45 -

* - вплетаются полосы картона до радиального размера 45мм.

рис.3. Схема выполнения ответвлений в обмотке НН при ПБВ.

Размер масляного канала в месте разрыва обмотки 8мм. В обмотке 31 осевой канал шириной 4,5мм и 10 каналов 4мм. Итого:

L=43·11,1+31·4,5+10·4+8=664,8 мм – высота обмотки.


рис.4. Структура обмотки ВН.

4.10. Плотность теплового потока:

qВH= =392,14 Вт/м2, меньше значения из графика 5.34 [1].

Между обмотками ВН и НН помещаем бумажно-бакелитовый цилиндр толщиной 3мм, внутренним диаметром 137мм.

4.11. Масса алюминия (формула 7.7 [1]):

GВН=8,47·103·с·Dср·w·ПВН=8,47·103·3·331·763·20,8=133,5 кг, где

с – число стержней;

Dcp – средний диаметр обмотки;

4.12. Внутренний и внешний диаметры обмоток:


D2внутр= D1внутр +2·а12=0,268+2·0,009=0,286м;

D2внеш= D2внутр +2·ар=0,286+2·0,045=0,376 м.

4.13. Масса обмоток:

Go=GHH+GВН=91,1+133,5=224,6кг.

Алюминиевого провода потребовалось на 5,3кг меньше, чем было рассчитано в пункте 2.10.

5. Расчет параметров короткого замыкания

5.1. Потери КЗ:

На низкой стороне:

PоснНН=12,75·JHH·GHH=12,75·1,585·91,1=2920 Вт (при t0 обмоток 750С);

На высокой стороне:

PоснВН=12,75·JВH·GВH=12,75·1,602·133,5=4371 Вт.

5.2. Добавочные потери:

5.2.1. Добавочные коэффициенты:

На низкой стороне:

kд=1+0,037·10-4·β2·a4·n2 – коэффициент добавочных потерь, где

β=,


где b – осевой размер проводника,

l – осевой размер обмотки;

а – радиальный размер проводника;

n – число витков.

β== =0,95

kдНН=1+0,037·10-4·β2·a4·n2=1+0,037·10-4·0,952·0,54·462=1,0004

На высокой стороне:

β== =0,651,

где m – число проводников в радиальном направлении

kдВН=1+0,037·10-4·β2·a4·n2=1+0,037·10-4·0,6512·2,04·432=1,008

5.2.2. Потери в отводах:

На низкой стороне:

Длина провода при соединении в звезду:

lотв=7,5Lo=7,5·0,665=4,988м;

Масса отвода:

GотвНН=lотв·ПНН·γА=4,988·332,5·2700·10-6=4,478 кг;

Потери:


PотвНН=12,75·JНH2·GотвНН=12,75·1,5852·4,478=143,5 Вт.

На высокой стороне:

Длина провода при соединении в треугольник:

lотв=14·Lo=14·0,665=9,31м;

Масса отвода:

GотвВН=lотв·ПВН·γА=9,31·20,8·2700·10-6=0,523 кг;

Потери:

PотвВН=12,75·JВH2·GотвВН=12,75·1,6022·0,523=17,1 Вт.

5.2.3. Потери в стенках бака:

Pбак=10·k·S=10·0,015·630=94,5 Вт , где k по табл.7.1 [1].

5.3. Полные потери.

Pk=PоснНН·kдНН+PоснВН·kдВН+PотвНН+PотвВН+Pбак= =2920·1,0004+4371·1,008+143,5+17,1+94,5=7581 Вт.

Для номинального напряжения:

Pk=7581 – 0,05·PоснВН·kдВН=7581 – 0,05·4371·1,008=7361 Вт;

=2,24% - отклонение от заданного значения.



Информация о работе «Проектирование силового трансформатора мощностью 630 кВА»
Раздел: Промышленность, производство
Количество знаков с пробелами: 35443
Количество таблиц: 6
Количество изображений: 9

Похожие работы

Скачать
91938
41
16

... сети, тип выбранной КТП, ее комплектацию и компоновку. 3.6 Выбор схемы силовой сети цеха Внутрицеховые сети выполняют по радиальной, магистральной или смешанной схемам. На выбор схемы влияют категория потребителей по надежности электроснабжения, взаимное расположение ЭП по площади цеха, их единичная мощность, связанность электроприемников единым технологическим процессом и характеристика ...

Скачать
169921
30
28

... - 8 25 22,666 12912 40350 Рис. 6. Картограмма электрических нагрузок точкой А на картограмме обозначим координаты центра электрических нагрузок завода. Выбор рационального напряжения При проектировании систем электроснабжения промышленных предприятий важным вопросом является выбор рациональных напряжений для схемы, поскольку их значения определяют параметры линий электропередачи и ...

Скачать
154193
27
28

... повреждения или отключения другой. 1. Определяют ток в линии в нормальном и послеаварийном режимах:  (6.1.5)  (6.1.6) 2. Сечение провода рассчитывают по экономической плотности тока: Для текстильного комбината: Тма = 6200-8000 ч., Тмр = 6220ч. [10]. Следовательно jэк = 1 А/мм2 [9].  (6.1.7) По полученному сечению выбирают алюминиевый провод со стальным сердечником марки АС-120/19. ...

Скачать
76997
18
14

... предприятием в часы максимальных нагрузок: , где 0,3-нормативный tgφэк для Западной Сибири и U=110кВ. Мощность компенсирующих устройств, которую необходимо установить в системе электроснабжения предприятия: Полная мощность предприятия, подведённая к шинам пункта приёма электроэнергии (ППЭ):   Суточный график электрических нагрузок. t.ч Рзим, % Рлетн,% ...

0 комментариев


Наверх