2. Анализ влияния углерода и легирующих элементов стали на технологию ее термообработки и полученные результаты

Хром – относительно дешевый и очень распространенный легирующий элемент. Он повышает точку А3 и понижают точку А4 (замыкает область γ-железа). Температура эвтектоидного превращения стали (точку А1) в присутствии хрома повышается, а содержание углерода в эвтектоиде (перлите) понижается. С углеродом хром образует карбиды (Cr7C3,Cr4C) более прочные и устойчивые, чем цементит. При содержании хрома 3 - 5% в стали одновременно присутствуют легированный цементит и карбид хрома Cr7C3, а если более 5% хрома, то в стали находится только карбид хрома. Растворяясь в феррите, хром повышает его твердость и прочность и прочность, незначительно снижая вязкость. Хром значительно увеличивает устойчивость переохлажденного аустенита.

В связи с большой устойчивостью переохлажденного аустенита и длительностью его распада, изотермический отжиг и изотермическую закалку хромистой стали проводить нецелесообразно.

Хром значительно уменьшает критическую скорость закалки, поэтому хромистая сталь обладает глубокой прокаливаемостью. Температура мартенситного превращения при наличии хрома снижается. Хром препятствует росту зерна и повышает устойчивость против отпуска. Поэтому отпуск хромистых сталей проводится при более высоких температурах по сравнению с отпуском углеродистых сталей. Хромистые стали подвержены отпускной хрупкости и поэтому после отпуска детали следует охлаждать быстро (в масле).

Карбидообразующими элементами являются хром и марганец. При растворении карбидообразующих элементов в цементите образующиеся карбиды называются легированным цементитом. При повышении содержания карбидообразующего элемента образуются самостоятельные карбиды данного элемента с углеродом, так называемые простые карбиды, например, Cr7C3, Cr4C, Mo2C. Все карбиды очень тверды (HRC 70 - 75) и плавятся при высокой температуре (Cr7C3 примерно при 1700°С).

При наличии карбидообразующих элементов кривая изотермического распада не сохраняет свой обычный С-образный вид, а становится как бы двойной С-образной кривой. На такой кривой наблюдаются две зоны минимальной устойчивости аустенита и между ними – зона максимальной устойчивости аустенита. Верхняя зона минимальной устойчивости аустенита расположена в интервале температур 600 - 650°С. В этой зоне происходит распад переохлажденного аустенита с образованием феррито-цементитной смеси.

Нижняя зона минимальной устойчивости аустенита расположена в интервале температур 300 - 400°С. В этой зоне происходит распад переохлажденного аустенита с образованием игольчатого троостита.

Микроструктура игольчатого троостита

 

Необходимо иметь в виду, что карбидообразующие элементы только в том случае повышают устойчивость аустенита, если они растворены в аустените. Если же карбиды находятся вне раствора в виде обособленных карбидов, то аустенит, наоборот, становится менее устойчивым. Это объясняется тем, что карбиды являются центрами кристаллизации, а также тем, что наличии нерастворенных карбидов приводит к обеднению аустенита легирующим элементом и углеродом.

При большом содержании хрома в стали находятся специальные карбиды хрома. Твердость такой стали при нагревании до более высокой температуры 400 - 450°С почти не изменяется. При нагревании до более высокой температуры (450 - 500°С) происходит повышение твердости.

3. Последовательность операции предварительной и окончательной термообработки деталей

Зубчатые колеса полуоси работают при больших скоростях скольжения и средних давлениях, поэтому основным требованием, предъявляемым к легированным конструкционным сталям, является сочетание высокой прочности, твердости и вязкости. Наряду с этим они должны иметь хорошие технологические и эксплуатационные свойства и быть дешевыми. Введение в сталь легирующих элементов само по себе уже улучшает ее механические свойства.

Для получения после цементации и последующей термической обработки высокой твердости поверхности и пластичной сердцевины детали изготовляют из низкоулеглеродистых сталей 15 и 20. получающаяся после цементации и последующей термической обработки твердая и прочная сердцевина у сталей с повышенным содержанием углерода предохраняет цементованный слой от продавливания при больших предельных нагрузках. Это позволяет снизить глубину цементованного слоя, т.е. сократить длительность цементации.

Доэвтектоидные стали при закалке нагревают до температуры на 30 -50°С выше верхней критической точки Ас3. При таком нагревании исходная феррито-перлитная структура превращается в аустенит, а после охлаждения со скоростью больше критической образуется структура мартенсита. Скорость охлаждения оказывает решающее влияние на результат закалки. Преимуществом масла является то, что закаливающаяся способность не изменяется с повышением температуры масла.

Масло недостаточно быстро охлаждает при 550 - 650°С, что ограничивает его применение только тех сталей, которые обладают небольшой критической скоростью закалки.

4. Режим операций предварительной и окончательной термообработки деталей (температура нагрева и микроструктура в нагретом состоянии, охлаждающая среда)

Последовательность операций обработки поршневого пальца, изготовленного из стали 18ХГТ:

Отливка – цементация - механическая обработка - закалка - высокий отпуск - механическая обработка;

В результате длительной выдержки при высокой температуре цементации происходит перегрев, сопровождающийся ростом зерна. Для получения высокой твердости цементованного слоя и достаточно высоких механических свойств сердцевины, а также для получения в поверхностном слое мелкоигольчатого мартенсита, деталь после цементации подвергнем последующей термической обработке.

В результате цементации поверхностный слой деталей науглероживается (0,8 – 1% С), а в сердцевине остается 0,12 – 0,32% С, т.е. получается как бы двухслойный металл. Поэтому для получения нужной структуры и свойств в поверхностном слое и в сердцевине необходима двойная термическая обработка.

Первая – закалка от 850 - 900°С; Вторая от 750 - 800°С и отпуск при 150 - 170°С. В результате первой закалке улучшается структура низкоуглеродистой сердцевины (перекристаллизация). При этой закалке структура поверхностного слоя тоже улучшается, так как быстрым охлаждением устраняется цементитная сетка. Но для науглероживания поверхностного слоя температура 850 - 900°С является слишком высокой и поэтому не устраняет перегрева. После цементации деталь поступает на механическую обработку. Основная цель закалки стали это получение высокой твердости, и прочности что является результатом образования в ней неравновесных структур – мартенсита, троостита, сорбита. Заэвтектоидную сталь нагревают выше точки Ас1 на 30 - 90 0С. Нагрев заэвтектоидной стали выше точки Ас1 производится для того, чтобы сохранить в структуре закаленной стали цементит, является еще более твердой составляющей, чем мартенсит (температура заэвтектоидных сталей постоянна и равна 760 - 780 0С). Вторая закалка от 750 - 800°С является нормальной закалкой для науглероженного слоя – устраняется перегрев и достигается высокая твердость слоя. Отпуск при 150 - 170°С проводится для снятия внутренних напряжений. После такого режима термической обработки структура поверхностного слоя – мелкоигольчатый мартенсит с вкраплениями избыточного цементита, а сердцевины – мелкозернистый феррит+перлит.

Механические свойства стали после термической обработки:

- Твердость в сердцевине повысилась до HRC 56-62 (пов.), НВ 363-415 (серд.)

- Предельная прочность (σв) равна 620 Н/мм2;

Физические свойства

Температура испытания, °С 800
Модуль нормальной упругости, Е, ГПа 129
Модуль упругости при сдвиге кручением G, ГПа 49
Плотность, pn, кг/см3 7800
Коэффициент теплопроводности Вт/(м ·°С) 29
Температура испытания, °С 20- 900

Микроструктура закаленной углеродистой стали после отпуска


Список использованной литературы

1. Пожидаева С.П. Технология конструкционных материалов: Уч. Пособие для студентов 1 и 2 курса факультета технологии и предпринимательства. Бирск. Госуд. Пед. Ин-т, 2002.

2. Марочник сталей и сплавов. 2-е изд., доп. и испр. / А.С. Зубченко, М.М. Колосков, Ю.В. Каширский и др. Под общей ред. А.С. Зубченко – М.: Машиностроение, 2003.

3. Самохоцкий А.И. Технология термической обработки металлов, М., Машгиз, 1962.


Информация о работе «Разработка технологического процесса термической обработки детали из стали марки 18ХГТ»
Раздел: Промышленность, производство
Количество знаков с пробелами: 13408
Количество таблиц: 4
Количество изображений: 2

Похожие работы

Скачать
50367
8
3

... 11,46 ч.~ 12 часов. Время низкого отпуска принимаем 120 мин.   1.4.5 Разработка и описание технологической карты химико-термической обработки деталей Технологическая карта - часть маршрутной технологии. Технологическая карта - это основной документ термического участка, в которой указан маршрут перемещения детали по участку. Зубчатое колесо подается на термический участок с помощью ...

Скачать
24452
11
1

... поверхностях зуба, мкм; Rz80 – шероховатость на боковых поверхностях шпоночного паза в центральном отверстии, мкм; Rz40 – шероховатость на дне шпоночного паза, мкм.   2.4 Разработка технологического процесса изготовления конического зубчатого колеса   2.4.1 Выбор заготовки и способа ее получения Для изготовления данной детали используется сталь 18 ХГТ Характеристика стали 18ХГТ Марка ...

Скачать
259162
24
61

... ? 25. В чем сущность биохимических, фотохимических, радиационно-химических, плазмохимических процессов? Указать области их применения. 26. Какие основные группы физических процессов используют в системах технологий? 27. Дать определение машиностроению как комплексной области. Какова структура машиностроительного предприятия? 28. Раскрыть сущность понятий «изделие», «деталь», «сборочная единица ...

Скачать
61875
20
5

... , предъявляемых к рабочим определенного тарифного разряда в зависимости от сложности и точности работ, условий труда и требующихся для выполнения этих работ знаний и практических навыков. В машиностроении принята шестиразрядная система тарификации работ. По приведенным выше формулам рассчитываем технические нормы времени на все операции технологического процесса. Точение черновое . - ...

0 комментариев


Наверх