1. Постановка задачи
1.1 Анализ задания на проектированиеПри работе над курсовой работой будем использовать следующие исходные данные:
а) Схема электрическая принципиальная (Приложение 1);
б) Информация о параметрах элементов согласно перечня элементов (Приложение 2);
в) Вид электрического монтажа – двусторонний печатный;
г) Количество сквозных металлизированных отверстий на плате – 10% от общего числа отверстий;
д) Для цепей питания входных и выходных сигналов предусмотреть соединители.
е) Условия эксплуатации по ГОСТ 15150-69 для категории исполнения УХЛ4.1;
ж) Вид приемки элементов – приемка ОТК ("1");
з) Перегрев в нагретой зоне ЭУ ; средний перегрев воздуха в ЭУ ;
и) Заданное время работы, указанное заказчиком - ;
к) Интересующая гамма-процентная наработка на отказ - ;
Кроме того при расчете показателей безотказности, необходимы будут такие данные, как коэффициенты электрической нагрузки элементов, которые можно получить из карт электрических режимов, для соответствующих элементов. Так же для определения нагрузочных коэффициентов, необходимы будут параметры некоторых радиоэлементов, которые можно получить из справочной литературы.
Определяем коэффициенты электрической нагрузки элементов из литературного источника [1]:
Для резистора:
KR = 0,7 (Таблица 7.20, с.157)
KM = 0,7 (Таблица 7.21, с.158)
KЭ = 2,5 (Таблица 7.5, с.143)
λОГ(λ6)х10-6 = 0,132 (Таблица 7.9, с.151)
КР – определяется по формуле:
где t – температура окружающей среды (корпуса элемента), 0С;
КН – коэффициент электрической нагрузки резистора по мощности;
A, B, NT, G, NS, J, H – постоянные коэффициенты.
Значения постоянных коэффициентов подбираем по таблице 7.19 вышеуказанного источника, c157:
A=0,26; B=0,5078; NT=343; G=9,278; NS=0,878; J=1; H=0,886.
Для расчета коэффициента электрической нагрузки резистора по мощности, понадобится его номинальная мощность. Так как используемые резисторы рассчитаны на мощность 0,125Вт, эту мощность и примем за номинальную. Для конденсаторов электролитических:
KC=0,2С0,23 (Таблица 7.18, с.157);
KЭ = 2,5 (Таблица 7.5, с.143);
λОГ(λ6)х10-6 = 0,52 (Таблица 7.9, с.151);
КР – определяется по формуле:
где tокр – температура окружающей среды (корпуса элемента), 0С;
КН – коэффициент электрической нагрузки конденсатора по напряжению;
Для расчета коэффициента электрической нагрузки конденсатора по напряжению, понадобится его максимально допустимое напряжение. Так как используемые конденсаторы рассчитаны на напряжение до 25В, это напряжение и примем за номинальное.
A, B, NT, G, NS, H – постоянные коэффициенты.
Значения постоянных коэффициентов подбираем по таблице 7.17 вышеуказанного источника, c156:
A=0,59*10-2; B=4,09; NT=358; G=5,9; NS=0,55; H=3.
Для конденсаторов керамических:
KC=0,4С0,14 (Таблица 7.18, с.157);
KЭ = 2,5 (Таблица 7.5, с.143);
λОГ(λ6)х10-6 = 0,52 (Таблица 7.9, с.151);
КР – определяется по формуле:
где tокр – температура окружающей среды (корпуса элемента), 0С;
КН – коэффициент электрической нагрузки конденсатора по напряжению;
Для расчета коэффициента электрической нагрузки конденсатора по напряжению, понадобится его максимально допустимое напряжение. Так как используемые конденсаторы рассчитаны на напряжение до 50В, это напряжение и примем за номинальное.
A, B, NT, G, NS, H – постоянные коэффициенты.
Значения постоянных коэффициентов подбираем по таблице 7.17 вышеуказанного источника, c156:
A=5,909*10-7; B=14,3; NT=398; G=1; NS=0,3; H=3.
Для диодов:
KД=0,6 (Таблица 7.15, с.155);
KU=0,7 (Таблица 7.16, с.155);
KФ=1,5 (Таблица 7.17, с.154);
KЭ = 2,5 (Таблица 7.5, с.143);
λОГ(λ6)х10-6 = 0,728 (Таблица 7.9, с.150);
КР – определяется по формуле:
где tокр – температура окружающей среды (корпуса элемента), 0С;
КН – коэффициент электрической нагрузки;
Для расчета коэффициента электрической нагрузки диодов, понадобится средний прямой ток. Для получения данного параметра воспользуемся интернет-справочником [4]. В соответствии с ним прямой ток диода сборки КД133А равен 0,5А.
A, NT, ТМ, L, – постоянные коэффициенты.
Значения постоянных коэффициентов подбираем по таблице 7.13 вышеуказанного источника, c154:
A=44,1025; NT=-2138; ТМ=448; L=17,7; .
Для транзисторов КТ646Б:
KД=0,5 (Таблица 7.15, с.155);
KU=0,5 (Таблица 7.16, с.155);
KФ=0,7 (Таблица 7.17, с.154);
KЭ = 2,5 (Таблица 7.5, с.143);
λОГ(λ6)х10-6 = 0,728 (Таблица 7.9, с.150);
КР – определяется по формуле:
где tокр – температура окружающей среды (корпуса элемента), 0С;
КН – коэффициент электрической нагрузки;
Для расчета коэффициента электрической нагрузки диодов, понадобится средний прямой ток. Для получения данного параметра воспользуемся интернет-справочником [4]. В соответствии с ним прямой ток диода сборки КД133А равен 0,5А.
A, NT, ТМ, L, – постоянные коэффициенты.
Значения постоянных коэффициентов подбираем по таблице 7.13 вышеуказанного источника, c154:
A=5,2; NT=-1162; ТМ=448; L=13,8; .
Для платы печатной:
KЭ = 2,5 (Таблица 7.5, с.143).
Для соединений пайкой волной:
KЭ = 2,5 (Таблица 7.5, с.143);
λОГ(λ6)х10-6 = 0,00034(Таблица 7.9, с.151).
1.3 Формулировка решаемой задачиДля оценки безотказности работы устройства будем использовать в первую очередь экспоненциальную характеристику надежности. Она определяется экспоненциальным законом надежности. В этом случае время до отказа распределяется по экспоненциальной модели. Проводя анализ вероятности выхода из строя каждого элемента схемы, получаем ряд значений, случайной величины, характеризующей вероятность отказа того или иного элемента в зависимости от его величины и параметров влияющей на него среды. Затем проводим анализ всех вероятностей отказов, и находим общую суммарную вероятность отказа. В соответствии с полученным результатом находим расчетные значения таких параметров безотказности, как:
а) наработка на отказ;
б) вероятность безотказной работы за определенное время;
в) гамма-процентная наработка на отказ.
График экспоненциальной зависимости надежности устройства от времени приведен на рисунке 1.1
Рисунок 1.1 – график экспоненциальной характеристики надежности
В соответствии с графиком видно, что надежность устройства уменьшается с увеличением времени его работы. Модель экспоненциального распределения часто используется для априорного анализа, так как позволяет не очень сложными расчетами получить простые соотношения для различных вариантов создаваемой системы. На стадии апостериорного анализа (опытных данных) должна проводиться проверка соответствия экспоненциальной модели результатам испытаний.
... -- Х3 - 6 Х4 - 4 Произведем декомпозицию относительно Х3 Х4 .По этим данным рисуем схему заданной логической функции рис.2.1.Y X0 '1' X4 X3 X1 X2 Рис 2.1 Комбинационная схема на 2-х входовом мультиплексоре Y0Y1Y2Y3'1' 2.2 Разработка логического устройства управления на трех входовых мультиплексорах.Используя МДНФ из раздела 2.1 произведем декомпозицию для ...
устройств вычислительной техники. Задачи проекта: Разработать печатную плату устройства управления питания компьютерной системы, произвести выбор и обоснование технологического процесса изготовления печатной платы, с исходными данными к проекту: схема электрическая принципиальная. Объём и содержание расчётно-пояснительной записки и графических работ произвести согласно техническому заданию. ...
... готовности не зависит от начального состояния ВС, из которого начинается ее эксплуатация. 2. Надежность, готовность и ремонтопригодность технических средств и вычислительных комплексов 2.1 Граф состояний вычислительной системы Вычислительная система в процессе функционирования может находиться в ...
... атмосферного давления; — интенсивность отказов элементов структуры (транзисторов, диодов, резисторов), металлизации, кристалла и конструкции (соединений, корпуса). Порядок расчета надежности полупроводниковых ИМС по внезапным отказам физическим методом следующий. 1. По заданной принципиальной электрической схеме и разработанной топологии определяют число ni структурных элементов каждого типа ...
0 комментариев