*3. АНАЛИТИЧЕСКОЕ И ГРАФИЧЕСКОЕ ОПРЕДЕЛЕНИЕ РЕЖИМОВ РАБОТЫ АСИНХРОННОЙ МАШИНЫ

*

Электромеханическое преобразование энергии может происхо­дить в асинхронной машине в следующих трех режимах:

в режиме двигателя 0 < s < l, Ω1 > Ω > 0;

в режиме генератора s < 0, Ω > Ω1;

в режиме тормоза s > 1, Ω < 0.

Кроме того, важны еще два характерных режима работы, в ко­торых электромеханическое преобразование энергии не происходит: режим идеального холостого хода (s = 0, Ω = Ω1) и режим корот­кого замыкания (s = 1, Ω = 0).

В режиме двигателя (область Д на рис. 3.2) под воздействием электромагнитного момента Μ > 0, направленного в сторону поля, ротор машины вращается в сторону поля со скоростью, мень­шей, чем скорость поля (Ω1 > Ω > 0, 0 < s < 1). В этом режиме

Ρэм = ΜΩ1 =  > 0; Ρмех = ΜΩ = Ρэ2  > 0.

Электрическая мощность Р1 = Рэм + Рм + Рэ1 > 0 преобра­зуется в механическую мощность Р2 = Рмех — Ρд — ΡΊ> 0, пере­даваемую через вал приводимой в движение машины.

Энергетические процессы в режиме двигателя иллюстрируются рис. 3.1, а, на котором направление активной составляющей тока ротора i совпадает с индуктированной в роторе ЭДС. Направление электромагнитного момента Μ определяется электромагнитной силой Bmi2a, действующей на ток i2a .

Полезная механическая мощность Р2 оказывается меньше по­требляемой из сети мощности на потери ΣΡ:

Ρ2 = Ρ1-ΣΡ = Ρ1 -(Ρэ1 + Ρмэ2 + Ρд + Ρт),

И КПД двигателя выражается формулой:

η =  = 1- = f(s)

В режиме генератора (область Г на рис. 3.2) под воздействием внешнего момента Мв > 0, направленного в сторону поля (рис. 3.1, б), ротор машины вращается со скоростью, превышаю­щей скорость поля (Ω > Ω1, s < 0). В этом режиме в связи с изме­нением направления вращения поля (Ω^) относительно ротора активная составляющая тока ротора г' изменяет свое направление иа обратное (по сравнению с двигательным режимом). Поэтому электромагнитный момент Μ = Bmi2a, уравновешивающий внешний момент, направлен против поля и считается отрицательным (М < 0), мощности Рэ„ и Ртх также отрицательны:

Ρэм = ΜΩ1 =  < 0; Ρмех = ΜΩ = Ρэ2  < 0.



Рис. 3.1. Режимы работы асинхронной машины.

а — двигательный;

б — генераторный;

в — тормоза;

г — трансформатора (или короткого замыкания).


Направление преобразования энергии изменяется на обратное: механическая мощность Рг, подведенная к валу машины, преоб­разуется в электрическую мощность Plt поступающую в сеть. Поскольку мощность потерь всегда положительна (в любом режиме работы эти мощности превращаются в тепло), механическая мощность:

Ρмех = Ρэм - Ρэ2 < 0 при s < 0

по абсолютному значению больше, чем электромагнитная (рис. 3.2):

мех| = | Ρэм | + Ρэ2

Рис. 3.2. Электромеханические характеристики асинхронной машины (в отно­сительных единицах при 1/х = 1; /0 = 0,364; cos <р0 = 0,185; Хг = Х'2 = 0,125; Кг = 0,0375; R's = 0,0425).

По той же причине потребляемая механическая мощность

P2 = P1 - ΣΡ < 0

по абсолютному значению на потери больше электрической мощнос­ти, отдаваемой в сеть:

2| = | Ρ1 | + ΣΡ,

и КПД генератора

η =  = 1-.

В режиме тормоза (область Т на рис. 3.2) под воздействием внешнего момента Мв < 0, направленного против вращения поля (рис. 3.1, в), ротор машины вращается в сторону, противоположную полю (Ω<0, s =  >1). В этом режиме электромагнитный момент М, уравновешивающий внешний момент, как и в режиме двигателя (направление вращения поля Ω.5 относительно ротора остается таким же, как в режиме двигателя), направлен в сторону поля и считается положительным (М > 0). Однако, поскольку Ω < 0, механическая мощность оказывается отрицательной:

Ρмех = ΜΩ = Ρэ2  < 0

Это означает, что она подводится к асинхронной машине. Электро­магнитная мощность в этом режиме положительна:

Ρэм = ΜΩ1 =  > 0

Это означает, что она поступает из сети в машину.

Подведенные к ротору машины со стороны сети |Ρэм| и вала |Ρмех| мощности превращаются в электрические потери Рэ2 в сопро­тивлении ротора R'2 (рис. 3.2):

мех| + | Ρэм | = Ρэ2  + Ρэ2 = Ρэ2 = m1 R'2(I '2)2 .

Асинхронная машина в этом режиме может быть использована для притормаживания опускаемого подъемным краном груза. При этом мощность | Ρмех | = | ΜΩ | поступает в ротор машины (см. рис. 3.1).

В режиме идеального холостого хода внешний вращающий мо­мент Μв, момент трения Μт = Ρт/Ω и момент, связанный с добавоч­ными потерями, Мд = Ρд/Ω равны нулю. Ротор вращается со ско­ростью поля (Ω = Ω1, s = 0) и не развивает полезной механической мощности (М = 0, Рмех = ΜΩ = 0).

В режиме идеального холостого хода внешний момент, прило­женный к валу машины, равен нулю (Мв = 0). Считается также, что отсутствует момент от трения вращающихся частей. Ротор машины вращается с той же угловой скоростью, что и вращающееся поле (Ω = Ω1), скольжение равно нулю (s = 0); ЭДС и токи в обмотке ротора не индуктируются (I2=0), и электромагнитный момент, уравновешивающий внешний момент и момент сил трения, равен нулю (М = 0).

Режим холостого хода асинхронной машины аналогичен ре­жиму холостого хода трансформатора. В асинхрон­ной машине и в трансформаторе ток в этом режиме имеется только в первичной обмотке I1 ≠ 0, а во вторичной — отсутствует (I2 = 0); в машине и в трансформаторе магнитное поле образуется в этом режиме только первичным током, что позволяет называть ток хо­лостого хода намагничивающим током (I1 = I0). В отличие от транс­форматора система токов I0 в фазах многофазной обмотки статора образует вращающееся магнитное поле.

По аналогии с трансформатором уравнение напряжений необ­ходимо составить при холостом ходе только для фазы обмотки статора, являющейся первичной обмоткой:

,

где — ЭДС, индуктированная в фазе вращающимся магнитным полем с потоком Фга;

— фазное напряжение первичной сети;

R1, Х1 — активное и индуктивное сопротивления рассеяния фазы первичной обмотки (см. далее).

В силу малости падений напряжений X1I0 и R1I0 напряжение  почти полностью уравновешивается ЭДС т. е.  = -.

В режиме холостого хода R'мех = R'2 = ∞, ток R'2 = 0 и схема замещения содержит только одну ветвь Z1 + Z0 (Т-образная и Г-образная схемы не отличаются друг от друга).

В режиме короткого замыкания под действием внешнего момента Μ в, уравновешивающего электромагнитный момент М, ротор удер­живается в неподвижном состоянии (Ω = 0, s =  = 1) и не совершает полезной механической работы (Рмех = Μ Ω = 0).

Направление тока i2a и электромагнитного момента Μ остается таким же, как в режиме двигателя, и Μ > 0 (см. рис. 3.1, г). Электромагнитная мощность Рэм = ΜΩ1 > 0 — она поступает в ротор из статора и превращается в электрические потери (Рэм = = Рэ2). В этом режиме асинхронная машина работает как коротко-замкнутый со вторичной стороны трансформатор, отличаясь от него только тем, что в ней существует вращающееся поле взаимной индукции вместо пульсирующего поля в трансформаторе.

В режиме короткого замыкания R'мех = R'2 = 0 и сопро­тивление схемы замещения по рис. 42-3 определяется параллельно включенными сопротивлениями Z1 + Z0 и Z1 + Z'2. Имея в виду, что |Z1 + Z'2| « |Z1 + Z0|, можно отбросить ветвь Z1 + Z0 и считать сопротивление схемы замещения при коротком замыкании равным

Zк = Z1 + Z'2 = Rк + jXк (43-3)

где

Rк= R1+ R'2

Если к неподвижному ротору асинхронной машины подключить симметричную систему дополнительных сопротивлений R + jХ, то она будет работать как трансформатор, преобразующий электрическую энергию, поступающую из первичной сети, в электрическую энергию с другими параметрами, потребля­емую дополнительными сопротивлениями R + jХ. Поэтому режим при s = 1 называется также режимом трансформатора.

Изменить режим работы асинхронной машины или скольжение машины в данном режиме (при U1 = const и f1 = const) можно только путем изменения внешнего момента Мв, приложенного к валу машины. При Мв = 0 ротор вращается со скоростью поля (Ω = Ω1, s = 0) и машина не совершает полезного преобразования энергии. При воздействии на вал ротора внешнего момента Мв, направленного против направления вращения поля, скорость ротора уменьшается до тех пор, пока не появится электромагнитный момент Μ = f(s), который уравновесит момент Мв. Машина переходит в режим двигателя s =  > 0. Наоборот, при воздействии внешнего момента Мв направленного по вращению поля, скорость ротора делается большей, чем скорость поля (Ω > Ω1), и машина переходит в режим генератора (s=<0).

Наконец, к режиму тормоза можно перейти из режима двигателя, изменяя внешний момент Мв таким образом, чтобы ротор сначала остановился, а затем пришел во вращение в противоположную сторону (по отношению к полю).


4. ЛИТЕРАТУРА.

1.   Иванов-Смоленский А. В. Электрические машины: Учебник для вузов. – М.: Энергия, 1980. – 928 с., ил.

2.   Вольдек А. И. Электричесие машины. Учебник для студентов высших учебн. Заведений. Л., «Энергия», 1974.

3.   Проектирование электрических машин: Учеб. Для вузов / Под ред. И. П. Копылова. М.: Высш. Шк., 2002. – 757 с.: ил.


Информация о работе «Режимы работы асинхронных двигателей»
Раздел: Промышленность, производство
Количество знаков с пробелами: 20189
Количество таблиц: 2
Количество изображений: 5

Похожие работы

Скачать
31692
18
14

... Потери, не изменяющиеся при изменении скольжения : Pст. + Pмех. = 727,12+125,6 = 852,17 Вт. Таблица 1. Рабочие характеристики асинхронного двигателя. Параметр Ед-ца Скольжение 0,005 0,01 0,015 sн=0,019 0,02 0,025 0,03 a’×r’2/s Ом 48,53 24,27 16,18 12,77 12,13 9,71 8,09 b’×r’2/s Ом 0 0 0 0 0 0 0 R = a + a¢*r¢2/s Ом 49,04 ...

Скачать
85971
4
45

... тепловой схемы выполнялось для стационарного режима, так как коэффициенты теплоотдачи в переходном и стационарном режимах одинаковы. Полученные результаты используются в компьютерной лабораторной работе «Моделирование нагрева асинхронного двигателя в различных режимах работы». Лабораторная работа выполнена в программной среде MatLab 6.1, и в ее приложении Simulink 4. Данная работа позволяет ...

Скачать
102925
0
29

... b = a(t2) + g(t2) = w0× t + g 2. ТЕХНИЧЕСКОЕ ЗАДАНИЕ 2.1 Наименование и область применения Разрабатываемое устройство называется: автоматическая система управления асинхронным двигателем. Область применения разрабатываемого устройства не ограничивается горнодобывающей промышленностью и может использоваться на любых предприятиях для управления машинами с асинхронным приводом. 2.2 Основание для ...

Скачать
140823
20
31

... . Целью дипломного проекта является разработка и исследование автоматической системы регулирования (АСР) асинхронного высоковольтного электропривода на базе автономного инвертора тока с трехфазным однообмоточным двигателем с детальной разработкой программы высокого уровня при различных законах управления. В ходе конкретизации из поставленной цели выделены следующие задачи. Провести анализ ...

0 комментариев


Наверх