2 СПЕЦИАЛЬНАЯ ЧАСТЬ

 

2.1Механический расчет магистрального газопровода

Цель расчета: Определить номинальную толщину стенки газопровода и подобрать трубу.

Исходные данные:

Диаметр газопровода, Dм, мм – 1420

Рабочее проектное давление Р, МПа – 7,5

Категория участка газопровода – ΙΙΙ

Температурный перепад Δt, ºC – 45

1)      Задаем ориентировочно характерными для данного диаметра труб (марок стали), выпускаемых промышленностью значений предела, прочности δвр =588 МПа и определяем нормативные сопротивления растяжению (сжатию) металла труб и сварных соединений R1, Мпа:

 (2.1)

Где  - δвр = 588 МПа;

m – коэффициент условий работы, принимается в зависимости от категории участка газопровода, m= 0,9;

К1 – коэффициент надежности по материалу, зависит от способа изготовления трубы, К1 = 1,34;

Кн – коэффициент надежности по назначению газопровода, зависит от давления, Кн = 1,15.

2)      Определяем толщину стенки газопровода δ, см.


 (2.2)

Где n – коэффициент надежности по нагрузке - внутреннему рабочему давлению в трубопроводе – принимается n=1,1;

- проектное рабочее давление =7,5 МПа

- наружный диаметр газопровода,  = 142 см.

По полученному результату выбираем толщину стенки трубы по сортаменту и проверяем выбранную трубу на наличие продольных осевых сжимающих напряжений, МПа, определяемых от расчетных нагрузок и воздействий с учетом упругости работы металла труб. Ориентировочно выбираем трубу Харцизского трубного завода ТУ 14-3-1938-2000 1420 х 18,7мм.

3) Определяем внутренний диаметр трубы Dвн, мм:

 (2.3)

Где Dн - наружный диаметр трубы;

δн – выбранная по сортаменту толщина стенки трубы;

 

Dвн = (1420 -2· 18,7) = 1382,6мм.

4)      Проверяем выбранную трубу на наличие продольных осевых напряжений, МПа:

 (2.4)


Где α – коэффициент линейного расширения металла трубы, α = 1,2 · ;

E – переменный параметр упругости (модуль Юнга), E=

Δt – расчетный температурный перепад, ºC ;

μ- коэффициент поперечной упругой деформации: Пуассона, в стадии работы металла, μ= 0,3;

δн – толщина стенки выбранной трубы, см;

Dвн - внутренний диаметр трубы, см.

5)      Поскольку результат отрицателен, то толщину стенки необходимо скорректировать. Для этого рассчитываем значение поправочного коэффициента ψ:

 (2.5)

Где - продольное осевое сжимающее напряжение берется по модулю из предыдущего расчета; МПа;

R1 - нормативные сопротивления растяжению (сжатию) металла труб и сварных соединений, МПа.


6) Подставив полученные значения поправочного коэффициента, определим стенку трубы с учетом продольных осевых напряжений, см:

 (2.6)

6)      В заключении проверяем выбранную трубу с точки зрения технологии сварочно-монтажных работ.

 (2.7)

1,01<1,87>0,4

Вывод: По результатам расчета возникающие в трубе продольные напряжения не опасны и выбранная нами труба полностью соответствует заданным параметрам.

2.2 Расчет необходимого количества материалов для сооружения участка газопровода

Цель расчета: Подобрать электроды и рассчитать необходимое их количество для сварки участка магистрального газопровода.

Исходные данные:

Труба Харцизского трубного завода

с пределом прочности 588 МПа (60 кгс/мм²)

Труба диаметром – 1420 мм

Толщина стенки – 18,7 мм

Электроды с основным видом покрытия.

1) Корневой слой шва выполняется электродами 3мм, а заполняющие слои шва - облицовочный и подварочный – электродами 4 мм. Исходя из толщины стенки трубы (18мм), количество заполняющих слоев будет равно 4. Корневой слой шва выполняем электродами Шварц 3К диаметром 3мм, а заполнение, облицовку и подварку электродами Кессель 5520 диаметром 4мм.

2) По диаметру электрода и допустимой плотности тока рассчитываем сварочный ток для сварки корневого и других слоев шва:

Для корневого слоя электродами диаметром 3 мм:

 (2.8)

Где dэ - диаметр электрода, мм;

j – допустимая плотность тока для электрода Д=3 мм, А/мм, j=15А/мм²

Для заполняющих, подварочного и облицовочного слоев шва электродами Д=4мм:

 (2.9)

Где dэ - диаметр электрода, мм;

j – допустимая плотность тока для электрода Д=4 мм, А/мм², j=12А/мм²

Принимаем:

Величина зазора между кромками труб - а = 3мм.

Высота притупления - hк = 3мм

Ширина подварочного шва - Cпод = 10мм

Высота подварочного слоя шва - hпод = 2мм

Высота облицовочного слоя шва - hо = 2мм.

Отсюда площадь подварочного слоя шва:

 (2.10)

Где Спод – ширина подварочного слоя шва, см;

hпод – высота подварочного слоя шва, см.

3)      Определяем толщину каждого из заполняющих слоев шва:

 (2.11)

Где - толщина стенки трубы, мм;

hк- высота притупления, мм;

n- количество заполняющих слоев шва.

4) Толщина всех заполняющих слоев шва будет:

 (2.12)

Где n – количество заполняющих слоев шва:

- толщина одного заполняющего слоя шва, см.

5)      Площадь корневого слоя шва находим по формуле:


 (2.13)

Где a- величина зазора между кромками труб, см.

6)      Так как угол разделки кромок составляет 30º, ширина внешнего заполняющего слоя будет:

 (2.14)

7)      Рассчитаем площадь заполняющих слоев шва:

 (2.15)

8)      Ширина облицовочного шва будет:

 (2.16)

9)      Площадь облицовочного шва будет:

 (2.17)


Где ho – высота облицовочного слоя шва.

10)    Определяем скорость сварки корневого слоя шва:

 (2.18)

Где αн – коэффициент наплавки, характеризующий удельную производительность процесса наплавки, г/(Ач), αн =9;

I – сварочный ток, А;

S – площадь поперечного сечения шва, см²;

P – плотность наплавленного металла, г/см³. Для трубной стали принимается 7,85 г/см³.

11) Аналогично определяем скорость сварки заполняющих, облицовочного и подварочного швов:

 (2.19)

 (2.20)

 (2.21)


По диаметру трубы рассчитываем длину сварочного шва:

L = 2πR (2.22)

L = 2 · 3,14 · (142: 2) = 445,88 см

Разделив стык на 4 зоны, получим:

Нижнее положение – 111,47 см

Вертикальное положение – 222,94см

Потолочное положение – 111,47см

Далее расчет ведем для наиболее удобного положения нижнего

12)    Определяем время горения электрода:

 (2.23)

 (2.24)

 (2.25)

 (2.26)


13)       Определяем количество наплавленного металла:

 (2.27)

 (2.28)

 (2.29)

 (2.30)

14)    Принимая удельный расход электродов на 1кг наплавленного металла при сварке 1,65, рассчитываем расход электродов для нижнего положения.

Для электродов 3мм (корневой шов)

 (2.31)

Для электродов 4мм

 (2.32)

16) Рассчитаем расход для других положений сварки:


 (2.33)

 (2.34)

 (2.35)

 (2.36)

17)    Проссумировав результаты, получим расход электродов на весь стык:

 (2.37)

 (2.38)

18)    Учитывая потери металла при зашлифовке и неполное сгорание электрода, уточняем количество:

 

Н = 1,2·1,14·Н (2.39)

Н3 = 1,2·1,14·0,55= 0,75кг

Н4 = 1,2·1,14·13,58= 18,57кг

19)    На сварку всего газопровода понадобится:

Н3 = 0,75·2083 =1562,3кг

Н4= 18,57·2083 = 38681,3кг


Вывод: Для сварки всего участка магистрального газопровода протяженностью 25 км из трубы диаметром 1420х 18,7мм понадобится: электродов 3 мм – 1562,3кг; для электродов 4 мм – 38681,3кг. А так как используемая для сооружения участка газопровода труба имеет заводское изоляционное покрытие, то понадобятся только термоусадочные манжеты в количестве равном количеству сварных стыков труб – 2083.


Информация о работе «Сооружение участка магистрального газопровода с разработкой очистки полости и испытания»
Раздел: Промышленность, производство
Количество знаков с пробелами: 76212
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
103606
6
9

... газа на линейных кранах, продувать конденсатосборники и т. п.; -           ликвидировать аварии и неисправности на линейной части газопровода, ГРС, КС; -           участвовать в проведении капитальных ремонтов магистрального газопровода; -           осуществлять своевременный ремонт грунтового основания и насыпей, а также проводить мероприятия по предотвращению эрозионного размыва грунтов; ...

Скачать
108091
0
0

... необходимо наносить после просушки предыдущего слоя. 6.22. Защиту от коррозии опорных и других металлоконструкций надземных трубопроводов необходимо выполнять в соответствии со СНиП 3.04.03-85. Контроль качества изоляционных покрытий 6.23. Качество изоляционных покрытий магистральных трубопроводов должен проверять подрядчик в присутствии представителя технадзора заказчика по мере их нанесения, ...

Скачать
53468
24
24

... кг. где: G - масса монтируемой трубы, кг; i - количество труб в плети, м; nк - количество кранов применяемых для монтажа плети, принимают не менее двух. строительный монтажный газопровод подземный Qс = 459,9 * 4 / 2 = 919,8 кг. По полученным данным выбираем грузозахватное приспособление марки ТП – 630 со следующими техническими характеристиками: Грузоподъемность, ...

Скачать
104857
32
33

... Анализ причин возможной деформации говорит о том, что уровень НДС идеальный. Поэтому данный участок требует контроля своего положения но не требует немедленной реконструкции. 3. контрольно-измерительные приборы и автоматика 3.1.     Электрохимическая защита от коррозии внутриплощадочных коммуникаций КС и шлейфов Защитный потенциал подземных коммуникаций КС создается с использованием одной ...

0 комментариев


Наверх