2 Твердые сплавы
Твердые сплавы - соединения металлических твердых материалов связанных металлом [4 до 6]. Эта группа, часто рассматривается как отнесенная к спекаемым соединениям карбидов (и нитридов) и черные металлы. Иногда, используются другие классификации. Дело обстоит так особенно при различении их от кермета и соединений с сверхтвердыми материалами.
Основные типы твердых сплавов, которые являются до сих пор преобладающими – твердые сплавы WC-Cо, предпочтительно использованные для работы с материалами, которые формируют короткую станочная стружка (серый чугун), и твердые сплавы основанные на WC-TiC-Co и WC-TiC-TaC-Co для работы с материалами, которые дают длинную станочную стружку (стали). В нескольких случаях, характеристика твердых сплавов может быть улучшена значительно, покрытием (секция 2.5) [6] к [8]. Твердые сплавы с TiC, TiN или Ti (C, N) используются в случаях, где требуются высокие скорости резания [9] до [12]. Они обычно упоминаются как "керметы". Чтобы выполнять специальные требования, например высокая коррозиеустойчивость, также используются другие твердые материалы и связки (секция 2.6).
Коммерчески располагаемые твердые сплавы для режущих инструментов обычно классифицируется применениям соответствии со стандартом 513 DIN-ISO. Это категоризирует применение в три главных группы, которые потом подразделяются условиями механической обработки. Эта область от чистой механической обработки с высокой скоростью резания к механической обработке в низкой скорости резания и в неблагоприятных условиях, типа большой глубины пропила и ступенчатого резания.
2.1 Формирования строения твердых сплавов
Карбид вольфрама, WC, не может быть расплавлен, если он сначала не был разложен. (Так называемое литые твердые сплавы - эвтектика, которая была расплавлена при 27000 C; это - WC-W2C и используется как узел в сварочных сплавах для предохранения против износа.). По этой причине, твердый сплав произведен, спечением смеси WC и Co, обычно в области между 1350 и 15000 C. Даже в течение нагревания (от о 7000 C), до 80 % заданного уплотнения, достигнуто спекающейся твердой фазой [13]. В то же самое время, кобальт рассеивает WC так, чтобы он присутствовал в течение изотермического спекания в форме жидкой фазы, насыщаемой с WC (рис. 17-5); эта фаза позволяет полное уплотнение спекаемой части.
После спекания, остаточная пористость должна быть ниже 1 %, и строение должно иметь соответствующее отношение твердости к изгибающейся характеристике сопротивления разрыву твердого сплава (рис. 17-1). Чтобы достигать этого система твердый сплав - связка должна выполнить некоторые требования; в случае системы WC-Cо эти требования выполнены превосходно: расплавленная связка увлажняет твердую материальную фазу полностью и течет между собираемыми материальными точками фазы. В то время как твердая фаза действительно не демонстрирует растворимость для металла-связки, металл-связка имеет растворимость для твердого материала, который является зависящим от температуры (рис. 17-5). В течение спекания твердых материальных, фаза растворяется расплавленным металлом-связкой и повторно осаждается. Чтобы минимизировать межфазную энергию, которая проводит к правильно построенным WC-кристаллам (рис. 17-6). Расплавление меньших и рост больших кристаллов (созревание Оствальда) - причина роста зерна в течение спекания; примеси с инородными атомами даже в малых концентрациях (ppm) противодействуют росту зерен зерна [14].
В течение затвердевания жидкой фазы (в течение охлаждения от температуры спекания), большинство растворенного WC кристализуется назад на твердых частицах. Поскольку растворимость металла-связки уменьшается, далее WC осаждается, пока диффузия не будет остановлена. Долю твердого материала, которая до сих пор является растворенной, стабилизирует кубическая фаза кобальта при комнатной температуре (иначе преобразование в гексагональную фазу в 4170 C) и определять механические свойства связки. Благодаря различным коэффициентам расширения, фаза кобальта, помещенна в напряжение, в то время как WC фазы , подчиненны сжимающему усилию. Это задерживает разрыв хрупкой карбидной фазы в течение механической нагрузки.
Процесс, который был описан, принимает двухфазную область твердого материала и металла-связки (рис. 17-7). В системе W-C-Co, стехиометрическая зона для этой области ограничена 6.08 к 6.20 мас.- % C в WC (стехиометрический состав 6.13 мас.- % C в WC). Иначе, хрупкая троичная система счисления η фаза (W3Co3C) или свободный углерод осаждается, оба из которых уменьшают прочность на изгиб.
При спекании твердых сплавов системы TiC-WC-Co, TiC растворяет карбид вольфрама до уровня насыщения (рис. 17-8). По этой причине, три фазы появляются в строении коммерчески доступних твердых сплавов; они - кубическая смешанная карбидная фаза (W, Ti) C, гексагональный WC и кобальта, как связка. Этот последний насыщается с соотношениями твердых материалов (рис. 17-9). Если TaC также добавлен к сплаву, он входит в смешанное формирование карбидной фазы (W, Ti, Ta) C и в то же самое время сужение доли (W, Ti, Ta) C твердого раствора (рис. 17-8).
Твердые сплавы основанные на TiC -Ni с Mo2C прибавлениями имеют различное строение. В течение спекания, оболочки, сделанные кубических (Ti, Мо)C1-х твердых растворов формируется вокруг магистрального зерна TiC; в отличие от чистого TiC, они хорошо увлажняются свзкой никеля (рис. 17-9). Пока, бориды не использовались в твердых сплавах, для увеличения твердости, потому что хрупкие тройные фазы формируют в течение производства, через влияние связки. Этих фаз можно избегать, прибавляя титан к TiB2(Fe, Cr, Ni) твердым сплавам[15].
... , водостойкость удовлетворительная. Более теплостоек клей ВС-10Т, который отличается высокими характеристиками длительной прочности, выносливости и термостабильности при склеивании металлов и теплостойких неметаллических материалов. Фенолокремнийорганические клеи содержат в качестве наполнителей асбест, алюминиевый порошок и др. Клеи являются термостойкими, они устойчивы к воде и тропическому ...
... раствора K4[Fe(CN)6]. Появление красно-бурого осадка свидетельствует о наличии урана в навеске руды. В отчете о выполнении качественного определения урана представить все реакции по ходу работы, в которых участвует уран. определение тория Реактивы: 1) серная кислота, концентрированная; 2) соляная кислота, концентрированная; 3) аммония фторид, кристаллический; ...
... при изучении синтеза новых материалов и процессов ионного транспорта в них. В чистом виде такие закономерности наиболее четко прослеживаются при исследовании монокристаллических твердых электролитов. В то же время при использовании твердых электролитов в качестве рабочих сред функциональных элементов необходимо учитывать, что нужны материалы заданного вида и формы, например в виде плотной керамики ...
... обеспечению развития экономики, а с другой - осуществлению гарантий прав человека в сфере труда. В лаборатории производятся исследования зависимости прочности клеевых соединений от технологических параметров склеивания при изготовлении верхней одежды. При исследовании используются электромеханическое оборудование. По степени опасности поражения людей электрическим током в окружающей среде, ...
0 комментариев