2 Термодинамический анализ процессов диссоциации

Как правило, целью термодинамического анализа является, по крайней мере, решение двух задач: во-первых, определение равновесного состава фаз и, во-вторых, определение направления протекания реакций в случае, когда исходные параметры системы не являются равновесными. Равновесное состояние рассматриваемой системы обычно определяется пятью переменными , количество которых может уменьшаться (например для изотермического процесса) или увеличиваться (например, при дополнительной диссоциации продуктов реакции  и ). Число компонентов, реализующих систему, обычно два, поэтому число степеней свободы зависит от числа фаз, которое составляет одну (диссоциация в газовой фазе), или две (большинство гетерогенных превращений), или три (твердофазные превращения): , где  — числа компонентов, фаз, степеней свободы.

Для гетерогенной системы константа равновесия должна учитывать не только наличие конденсированных фаз, но и возможности образования растворов. Учет этих изменений производится в предположении, что при равновесном сосуществовании нескольких фаз химические потенциалы данного компонента в разных фазах равны, поэтому константы равновесия (в случае конденсированных веществ  и  могут быть представлены выражением:

где —  давление насыщенных паров; k — постоянная Больцмана; — активности; — химические потенциалы для веществ А и АВ соответственно; — химический потенциал вещества В.

Для мольных величин с учетом, что , — функции только температуры:

Равновесное давление газа , равное

называется упругостью диссоциации и служит мерой химической прочности соединения. При малых значениях  эта величина теряет смысл давления, поэтому более общей характеристикой мерой прочности соединения является изменение энергии Гиббса , стандартная величина которой называется мерой химического сродства вещества А к веществу В (например, мерой химического сродства металла к кислороду).

Анализ прочности соединений с использованием упругости диссоциации  возможен в случае, когда газ В сам не диссоциирует. Если он диссоциирует, то величина , как мера прочности, не характеризует природу оксида; в этом случае необходим полный анализ состава газовой фазы /3/.

Температурная зависимость стандартной  определяется, как это было показано выше, путем интегрирования

где  — алгебраическая сумма теплоемкостей, стандартные значения энтальпии и энтропии веществ, участвующих в реакции.

Зависимость  часто представлена уравнениями

На рис 2, 3 представлена зависимость  для реакций диссоциации оксидов и сульфидов.

Можно отметить, что зависимости имеют сходный характер изменения и наиболее прочными являются соединения с большей величиной . Однако, с увеличением температуры уменьшение химической прочности (уменьшение ) может привести к изменению относительной (по отношению к другому соединению) прочности и при этом возможно пересечение линий . Линейная зависимость  может иметь изломы при температурах, которые совпадают с точками фазовых превращений компонентов. Часто в справочной литературе приводятся зависимости  для реакций образования (оксидов, сульфидов и т. д.), которые графически являются симметричными относительно оси температур графикам, приведенным на рис. 2, 3.

Рис. 2

Зависимость стандартной энергии Гиббса диссоциации оксидов  от температуры (на 1 моль кислорода)

Рис. 3

Зависимость стандартной энергии Гиббса () диссоциации сульфидов от температуры (на 1 моль серы)

 


Информация о работе «Термодинамическая диссоциация оксидов железа»
Раздел: Промышленность, производство
Количество знаков с пробелами: 12633
Количество таблиц: 7
Количество изображений: 6

Похожие работы

Скачать
442397
6
13

... с кислородом, восстановлением - отнятие кислорода. С введением в химию электронных представлений понятие окислительно-восстановительных реакций было распространено на реакции, в которых кислород не участвует. В неорганической химии окислительно-восстановительные реакции (ОВР) формально могут рассматриваться как перемещение электронов от атома одного реагента (восстановителя) к атому другого ( ...

Скачать
70637
11
7

... достигала 63%.[8] Рассмотрен процесс превращения этиленгликоля в ацетальдегид. Предложены возможные варианты механизма этого процесса [9]. СН2 – ОН  СН3СНО + Н2О СН2 – ОН Предложен метод получения ацетальдегида селективным гидрированием уксусной кислоты на катализаторе α-Fe2O3, нанесённом на основу SBN-15. СН3СООН + Н2  СН3СНО + Н2О Получена серия катализаторов, содержащих 20-60% &# ...

Скачать
40631
8
5

... оксида углерода: Диоксид урана, полученный термической диссоциацией оксалата уранила, пирофорен, легко взаимодействует с газообразным фтористым водородом т плавиковой кислотой. Получение оксидов урана из аммонийуранилтрикарбоната Аммонийуранилтрикарбонат разлагается на воздухе при температуре 700 – 900°С с образованием закиси-окиси урана: В этом же интервале температур, но в ...

Скачать
36871
18
2

... молибдена и др. Эти материалы могут быть использованы в качестве легирующие компоненты для выплавки легированных чугуну и стали. Результаты исследований [11] показали, что использование отработанных никелевых катализаторов позволяет получать заготовку шихты с содержанием никеля 11 % и ванадию 3 % при одношлаковом режиме плавки.   1.2 Особенности редкофазной обновительной плавки.   Выполненный ...

0 комментариев


Наверх