1.3 Ультразвуковая пропитка

Скорость движения жидкости по капиллярам и качество заполнения пор существенно интенсифицируются под действием ультразвуковых колебаний.

Рисунок 3 – Схема ультразвуковой пропитки: 1 – сосуд с жидкостью; 2 – пропитываемая заготовка; 3 – пропитывающая жидкость; 4 – нагреватель; 5 – мембрана; 6 – магнитостриктор.


Одна из возможных схем ультразвуковой пропитки приведена на Рисунок 34. В ультразвуковом поле изделия пропитываются в несколько раз быстрее, чем при самопроизвольной пропитке. Простота и технологичность позволяют легко включить ультразвуковую пропитку в поточную линию производства изделий из порошков.

1.4 Керметы, получаемые методом пропитки

Метод пропитки позволяет изготавливать композиции из различных веществ, сочетая в одном материале металл с керамикой, полимерами, графитом и другими материалами и варьируя в широких пределах эксплуатационные характеристики изделий.

Керметы (керамико-металлические материалы) – материалы, представляющие собой композиции одной или нескольких керамических фаз с металлами. Керамическую фазу в керметах обычно составляют порошки оксидов, карбидов, нитридов и других тугоплавких соединений. Считается, что объемная доля керамики в керметах может изменяться от 0,15 до 0,85. Керметы классифицируют по природе керамической составляющей (оксидные, карбидные, нитридные, боридные) и по применению (жаропрочные, износостойкие, высокоогнеупорные, коррозионно-стойкие и др.).

Микроструктура керметов может представлять собой керамическую матрицу, внутри которой расположены металлические включения; металлическую матрицу с изолированными между собой керамическими частицами; два равноправных каркаса из металла и керамики и статистическую смесь керамических и металлических частиц. Выбор той или иной структуры диктуется назначением материала и технологией его получения.

Керметы изготавливают методами порошковой металлургии – прессованием и твердофазным спеканием, жидкофазным спеканием, пропиткой, экструзией, горячим прессованием, прокаткой и др.

Изготовление керметов методом пропитки используют реже, чем жидкофазное спекание. Это связано с тем, что в большинстве случаев стремятся получить структуру кермета, при которой каждая частица карбида окружена слоем металла, чтобы обеспечить повышенные показатели ударной вязкости и трещиностойкости, а такую структуру легче получить жидкофазным спеканием, чем пропиткой. Тем не менее, в ряде случаев целесообразно использовать метод пропитки, который позволяет получать изделия сложной формы с практически нулевой пористостью, регулировать время контактирования тугоплавкого соединения с жидким металлом (сплавом) и пригоден для выпуска деталей больших серий.

Работоспособность кермета контролируется как свойствами его составляющих и их относительной концентрацией, так и прочностью их связи, а также структурой тугоплавкого каркаса, формирующегося на стадии предварительного спекания под пропитку. На этой стадии необходимо обеспечить требуемую пористость, определенный размер пор и зерен, а также прочность самого каркаса.

Одним из наиболее важных моментов в регулировании свойств керметов является управление межфазным взаимодействием. Оптимальным в смысле обеспечения прочности является термодинамически равновесная адгезия между фазами.

Теоретические оценки и накопленный экспериментальный опыт по межфазному взаимодействию позволяют установить правила выбора металлических матриц для керметов. В керметах, содержащих оксиды, металлическая составляющая должна иметь меньшее сродство к кислороду, чем металл оксида, или образовывать оксиды, изоморфные основной оксидной составляющей кермета (например, оксид алюминия - хром). В керметах на основе карбидов рекомендуется в качестве металлической фазы применять металлы, которые не образуют карбидов. Металлическая связка нитридных керметов не должна образовывать стойких нитридов, а силицидных – не должна взаимодействовать с кремнием, поскольку последний в силицидах имеет практически такую же активность, как в свободном состоянии.

Прочность связи на межфазной границе можно регулировать в широких пределах при получении керметов за счет введения в расплавленный металл адгезионно-активных добавок.

Керметы типа металл - тугоплавкое соединение используют в качестве фрикционных, антифрикционных, конструкционных, огнеупорных, износостойких, эрозионностойких и абразивных материалов. Рассмотрим некоторые керметы, получаемые пропиткой карбидных каркасов металлическими расплавами.

1.5 Керметы на основе карбида вольфрама

Наиболее распространенными керметами являются сплавы системы WC-Co. При нагреве прессовки из карбида вольфрама, на которую сверху положен чистый кобальт (Рисунок 4, а), происходит частичное спекание карбидных частиц. При температурах 1550 К образуется эвтектика и в местах контакта прессовки с кобальтом появляется жидкая фаза, пропитывающая карбидный каркас (Рисунок 4, б).

При более низких температурах растворение карбида в кобальте пренебрежимо мало. Десятиминутная выдержка при 1720 К приводит к полному расплавлению кобальта и пропитке каркаса, однако при этом верх изделия плотнее и богаче связующим металлом, чем его нижняя часть. Для выравнивания состава по всему объему требуется выдержка 2–4 ч при той же температуре (Рисунок 35, в). На поверхности каркаса в процессе пропитки образуются раковины глубиной 1-3 мм в результате растворения карбида вольфрама в кобальте. При охлаждении до комнатной температуры происходит выделение карбида вольфрама из раствора и рост его частиц (Рисунок 35, г). Структура твердого сплава состоит из частиц карбид; (1), окруженных матрицей из кобальтовой фазы (). В процессе высокотемпературной выдержки происходит растворение первоначальных карбидных мостиков и усадка материала.

Рисунок 4 – Схема пропитки карбида вольфрама чистым кобальтом (а – г) и сплавами кобальта с карбидом вольфрама эвтектического (д, е) и заэвтектического состава (ж, з): а, д, ж – 293 -1553 К; б – 1553 К; в – 1673-1753 К; г,е.з – 293 К.

При пропитке пористого карбидного каркаса сплавом эвтектического состава (Co-27WC) раковины на поверхности образца не образуются (Рисунок 35, д, е), наблюдается только незначительная шероховатость поверхности. Если же для пропитки используют сплав с избытком карбида (Рисунок 35, ж, з), то на пропитываемом изделии остается легко удаляемый слой из карбида вольфрама и кобальта. Таким образом, предварительное насыщение металла элементами, из которых состоит тугоплавкое соединение, позволяет устранить появление раковин.

Пропиткой спрессованного карбида вольфрама медью, медно-никелевым сплавом Cu–10%Ni, марганцевым мельхиором МНМц60-20–20 и медносеребряным сплавом получали керметы, предназначенные для работы в торцевых уплотнениях насосов, перекачивающих кислоты и щелочи.



Информация о работе «Технологии извлечения вольфрама»
Раздел: Промышленность, производство
Количество знаков с пробелами: 28943
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
33808
0
0

... алюминат, что усложняет процесс отделения раствора палладия от носителя из-за объемного осадка гидрооксида алюминия. Технической задачей предложенного способа является максимальное извлечение палладия из отработанных катализаторов на основе оксида алюминия и получение чистого металла. Поставленная задача решается за счет того, что катализатор подвергают четырехэтапной обработке соляной кислотой ...

Скачать
111245
36
19

... источник лома твердых сплавов − это отработавшее горнобуровое оборудование и конструкционные детали, а так же отходы и брак при производстве этой продукции. 3.2. Основные способы переработки твёрдых сплавов. 3.2.1. Хлорирование. 1) Подготовленные отходы хлорируют смесью хлора с диоксидом углерода при 850-900°С. Образовавшиеся хлориды вольфрама (WC16), титана (TiCl4) и кобальта ( ...

Скачать
79508
20
9

... других металлов и взаимным влиянием компонентов сплавов на технологические процессы [2]. 3.5.1.Окислительные методы Их можно использовать и для переработки сплавов и кусковых отходов твердых сплавов. Применяемые в настоящее время инструментальные твердые сплавы базируются на карбидах вольфрама, титана и тантала или на смеси указанных соединений с добавлением связующего металла - кобальта. К ...

Скачать
77848
3
3

... C5H12CO, циклогексаноном (СН2)5СО и ацетофеноном СН3СОС6Н5. Экстрагирование молибдена дорганическими веществами с целью его выделения из отходов молибденового производства является наиболее рациональным способом получения молибдена. Глава 2. Свойства молибдена и его соединений Рассмотрим основные физические и химические свойства молибдена, что поможет в дальнейшем объяснить его способы ...

0 комментариев


Наверх