1.2  Классификация трубчатых печей

 

Классификация печей – это упорядоченное разделение их в логической последовательности и соподчинении на основе признаков содержания на классы, виды, типы и фиксирование закономерных связей между ними с целью определения точного места в классификационной системе, которое указывает на их свойства. Она служит средством кодирования, хранения и поиска информации, содержащейся в ней, дает возможность распространения обобщенного опыта, полученного теорией и промышленной практикой эксплуатации печей, в виде готовых блоков, комплексных типовых решений и рекомендаций для разработки оптимальных конструкций печей и условий осуществления в них термотехнологических и теплотехнических процессов.

Главными и естественными по степени существенности основаниями для классификации печей в логической последовательности являются следующие признаки:

– технологические;

– теплотехнические;

– конструктивные.

1.2.1 Технологические признаки

По технологическому назначению различают печи нагревательные и реакционно-нагревательные.

В первом случае целью является нагрев сырья до заданной температуры. Это большая группа печей, применяемых в качестве нагревателей сырья, характеризуется высокой производительностью и умеренными температурами нагрева (300-500°С) углеводородных сред (установки АТ, АВТ, ГФУ).

Во втором случае кроме нагрева в определенных участках трубного змеевика обеспечиваются условия для протекания направленной реакции. Эта группа печей многих нефтехимических производств одновременно с нагревом и перегревом сырья используется в качестве реакторов. Их рабочие условия отличаются параметрами высокотемпературного процесса деструкции углеводородного сырья и невысокой массовой скоростью (установки пиролиза, конверсии углеводородных газов и др.).

1.2.2 Теплотехнические признаки

По способу передачи тепла нагреваемому продукту печи подразделяются:

– на конвективные;

– радиационные;

– радиационно-конвективные.

Конвективные печи – это один из старейших типов печей. Они являются как бы переходными от нефтеперегонных установок к печам радиационно-конвективного типа. Практически в настоящее время эти печи не применяются, так как по сравнению с печами радиационными или радиационно-конвективными они требуют больше затрат как на их строительство, так и во время эксплуатации. Исключение составляют только специальные случаи, когда необходимо нагревать чувствительные к температуре вещества сравнительно холодными дымовыми газами.

Печь состоит из двух основных частей – камеры сгорания и трубчатого пространства, которые отделены друг от друга стеной, так что трубы не подвергаются прямому воздействию пламени, и большая часть тепла передается нагреваемому веществу путем конвекции. Чтобы предотвратить прожог первых рядов труб, куда поступают сильно нагретые дымовые газы из камеры сгорания, и чтобы коэффициент теплоотдачи удерживался в пределах, приемлемых по технико-экономическим соображениям, при сжигании используется значительный избыток воздуха или 1,5-4-кратная рециркуляция остывших дымовых газов, отводимых из трубчатого пространства и нагнетаемых воздуходувкой снова в камеру сгорания. Одна из конструкций конвективной печи показана на рисунке 1.3.

Дымовые газы проходят через трубчатое пространство сверху вниз. По мере падения температуры газов соответственно равномерно уменьшается поперечное сечение трубчатого пространства, при этом сохраняется постоянная объемная скорость продуктов сгорания.

Рисунок 1.3 – Конвективная печь

1 – горелки; 2 – камера сгорания; 3 – канал для отвода дымовых газов; 4 – камера конвекции

В радиационной печи все трубы, через которые проходит нагреваемое вещество, помещены на стенах камеры сгорания. Поэтому у радиационных печей камера сгорания значительно больше, чем у конвективных. Все трубы подвергаются прямому воздействию газообразной среды, которая имеет высокую температуру. Этим достигается:

а) уменьшение общей площади теплоотдачи печи, так как количество тепла, отданного единице площади труб, путем радиации при одинаковой температуре среды (особенно при высоких температурах этой среды), значительно больше, чем количество тепла, которое можно передать путем конвекции;

б) хорошая сохранность футеровки за трубчатыми змеевиками, благодаря тому, что снижается ее температура, во-первых, за счет прямого закрытия части ее трубами, во-вторых, за счет отдачи тепла излучением футеровкой более холодным трубам.

Обычно нецелесообразно закрывать все стены и свод трубами, так как этим ограничивается теплоизлучение открытых поверхностей, а в результате уменьшается общее количество тепла, отдаваемого единицей площади труб.

Например, у современных типов кубовых печей отношение эффективной открытой поверхности к общей внутренней поверхности печи колеблется в пределах 0,2-0,5.

Чисто радиационные печи из-за простоты конструкции и большой тепловой нагрузки труб имеют самые низкие капитальные затраты на единицу переданного тепла. Однако они не дают возможности использовать тепло продуктов сгорания, как это имеет место у радиационно-конвективньгх печей. Поэтому радиационные печи работают с меньшей тепловой эффективностью.

Радиационные печи применяются при нагреве веществ до низких температур (приблизительно до 300 °С), при небольшом их количестве, при необходимости использования малоценных дешевых топлив и в тех случаях, когда особое значение придается низким затратам на сооружение печи.

Радиационно-конвективная печь имеет две отделенные друг от друга секции: радиационную и конвективную. Большая часть используемого тепла передается в радиационной секции (обычно 60-80 % всего использованного тепла), остальное – в конвективной секции.

Конвективная секция служит для использования физического тепла продуктов сгорания, выходящих из радиационной секции обычно с температурой 700-900°С, при экономически приемлемой температуре нагрева 350-500°С (соответственно температуре перегонки).

Величина конвективной секции, как правило, подбирается с таким расчетом, чтобы температура продуктов сгорания, выходящих в боров, была почти на 150°С выше, чем температура нагреваемых веществ при входе в печь. Поэтому тепловая нагрузка труб в конвективной секции меньше, чем в радиационной, что обусловлено низким коэффициентом теплоотдачи со стороны дымовых газов.

С внешней стороны иногда эти трубы снабжаются добавочной поверхностью – поперечными или продольными ребрами, шипами и т. п.

Почти все печи, эксплуатируемые в настоящее время на нефтеперерабатывающих заводах, являются радиационно-конвекционными. В печах такого типа трубные змеевики размещены и в конвекционной и в радиантной камерах.


Информация о работе «Технологические печи»
Раздел: Промышленность, производство
Количество знаков с пробелами: 35942
Количество таблиц: 0
Количество изображений: 17

Похожие работы

Скачать
23333
4
2

... . Из воздухопо-догревателя дымовые газы поступают в КТАН, где поступающая по змеевику вода нагревается и идет на прямую к потребителю, а дымовые газы – в атмосферу.   2. Расчет печи   2.1 Расчет процесса горения   Определим низшую теплоту сгорания топлива Qрн. Если топливо представляет собой индивидуальный углеводород, то теплота сгорания его Qрн равна стандартной теплоте сгорания за вычетом ...

Скачать
171165
17
0

... тепловой нагрузки. Для перехода на дистанционное управление служит блок 14 (БРУ-У), соединенный через пускатель 75 (ПРБ-74) с двигателем 16 (МЭО 25/100), перемещающим P.O. III. Теплота сгорания топлива контролируется датчиком 17 (КГ-7093.01), корректирующий импульс формируется во вторичном приборе 18 (КГ-7093.02). Кор­рекция задания при изменении тепловой нагрузки осуществляется с помощью блока ...

Скачать
23118
1
0

... систему, на органы пищеварения. ПДК 0,0003 мг/л – приоритетное загрязняющее вещество. Ксилол – воздействие на органы дыхания, на кроветворную систему, на кроветворную систему. ПДК 0,05 мг/л. 2.3 Расчет загрязнения водного объекта. Установление норм ПДС ПДС рассчитывают по наибольшим среднечасовым расходам сточных вод фактического периода спуска. ПДС=СПДС*qСТ, г/ч, где СПДС – ...

Скачать
128170
37
0

... технический университет Физико -технологический факультет Кафедра физического металловедения Курсовой проект Тема: “ Проект термического отделения для обезуглероживающего и рекристаллизационного отжига изотропной электротехнической стали третьей группы легирования в толщине 0,5 мм в условиях ЛПЦ-5 АО НЛМК. Годовая программа 120000 тонн Выполнила ст. гр. МТ-94-1 Кузнецова Е. В. ...

0 комментариев


Наверх