Государственное образовательное учреждение высшего профессионального образования
«Самарский Государственный Технический Университет»
Кафедра «Химическая технология и промышленная экология»
КУРСОВАЯ РАБОТА
по дисциплине «Техническая термодинамика и теплотехника»
Тема: Расчет установки утилизации теплоты отходящих газов технологической печи
Выполнил: Студент Рябинина Е.А.
ЗФ курс III группа 19
Проверил: Консультант Чуркина А.Ю.
Самара 2010 г.
Введение
На большинстве химических предприятий образуются высоко- и низко-температурные тепловые отходы, которые могут быть использованы в качестве вторичных энергетических ресурсов (ВЭР). К ним относятся уходящие газы различных котлов и технологических печей, охлаждаемые потоки, охлаждающая вода и отработанный пар.
Тепловые ВЭР в значительной степени покрывают потребности в тепле отдельных производств. Так, в азотной промышленности за счет ВЭР удовлетворяется боле 26 % потребности в тепле, в содовой промышленности – более 11 %.
Количество использованных ВЭР зависит от трех факторов: температуры ВЭР, их тепловой мощности и непрерывности выхода.
В настоящее время наибольшее распространение получила утилизация тепла отходящих производственных газов, которые почти для всех огнетехнических процессов имеют высокий температурный потенциал и в большинстве производств могут использоваться непрерывно. Тепло отходящих газов является основной состовляющей энергетического баланса. Его используют преимущественно для технологических, а в некоторых случаях – и для энергетических целей ( в котлах-утилизаторах).
Однако широкое использование высокотемпературных тепловых ВЭР связано с разработкой методов утилизации, в том числе тепла раскаленных шлаков, продуктов и т. д., новых способов утилизации тепла отходящих газов, а также с совершенствованием конструкций существующего утилизационного оборудования.
1. Описание технологической схемы
В трубчатых печах, не имеющих камеры конвекции, или в печах радиантно-конвекционного типа, но имеющих сравнительно высокую начальную температуру нагреваемого продукта, температура отходящих газов может быть сравнительно высокой, что приводит к повышенным потерям тепла, уменьшению КПД печи и большему расходу топлива. Поэтому необходимо использовать тепло отходящих газов. Этого можно достигнуть либо применением воздухоподогревателя, нагревающего воздух, поступающий в печь для горения топлива, либо установкой котлов-утилизаторов, позволяющих получить водяной пар, необходимый для технологических нужд.
Однако для осуществления подогрева воздуха требуются дополнительные затраты на сооружение воздухоподогревателя, воздуходувки, а также дополнительный расход электроэнергии, потребляемый двигателем воздуходувки.
Для обеспечения нормальной эксплуатации воздухоподогревателя важно предотвратить возможность коррозии его поверхности со стороны потока дымовых газов. Такое явление возможно, когда температура поверхности теплообмена ниже температуры точки росы; при этом часть дымовых газов, непосредственно соприкасаясь с поверхностью воздухоподогревателя, значительно охлаждается, содержащийся в них водяной пар частично конденсируется и, поглощая из газов диоксид серы, образует агрессивную слабую кислоту.
Точка росы соответствует температуре, при которой давление насыщенных паров воды оказывается равным парциальному давлению водяных паров, содержащихся в дымовых газах.
Одним из наиболее надежных способов защиты от коррозии является предварительный подогрев воздуха каким-либо способом (например, в водяных или паровых калориферах) до температуры выше точки росы. Такая коррозия может иметь место и на поверхности конвекционных труб, если температура сырья, поступающего в печь, ниже точки росы.
Источником теплоты, для повышения температуры насыщенного пара, является реакция окисления (горения) первичного топлива. Образующиеся при горении дымовые газы отдают свою теплоту в радиационной, а затем конвекционной камерах сырьевому потоку (водяному пару). Перегретый водяной пар поступает к потребителю, а продукты сгорания покидают печь и поступают в котел-утилизатор. На выходе из КУ насыщенный водяной пар поступает обратно на подачу в печь перегрева пара, а дымовые газы, охлаждаясь питательной водой, поступают в воздухоподогреватель. Из воздухопо-догревателя дымовые газы поступают в КТАН, где поступающая по змеевику вода нагревается и идет на прямую к потребителю, а дымовые газы – в атмосферу.
2. Расчет печи
2.1 Расчет процесса горения
Определим низшую теплоту сгорания топлива Qрн. Если топливо представляет собой индивидуальный углеводород, то теплота сгорания его Qрн равна стандартной теплоте сгорания за вычетом теплоты испарения воды, находящейся в продуктах сгорания. Также она может быть рассчитана по стандартным тепловым эффектам образования исходных и конечных продуктов исходя из закона Гесса.
Для топлива, состоящего из смеси углеводородов, теплота сгорания определяется, но правилу аддитивности:
где Qpiн - теплота сгорания i-гo компонента топлива;
yi - концентрация i-гo компонента топлива в долях от единицы, тогда:
Qрнсм = 35,84 ∙ 0,987 + 63,80 ∙ 0,0033+ 91,32 ∙ 0,0012+ 118,73 ∙ 0,0004 + 146,10 ∙ 0,0001 = 35,75 МДж/м3.
Молярную масса топлива:
Mm = Σ Mi∙ yi,
где Mi – молярная масса i-гo компонента топлива, отсюда:
Mm =16,042 ∙ 0,987 + 30,07 ∙ 0,0033 + 44,094 ∙ 0,0012 + 58,120 ∙ 0,0004 + 72,15 ∙ 0,0001 + 44,010∙0,001+ 28,01 ∙ 0,007 = 16,25 кг/моль.
кг/м3,
тогда Qрнсм, выраженная в МДж/кг, равна:
МДж/кг.
Результаты расчета сводим в табл. 1:
Состав топлива Таблица 1
Компонент | Молярная масса Mi, кг/кмоль | Молярная доля yi, кмоль/кмоль | Mi ∙ yi, кг/кмоль |
CH4 | 16,042 | 0,9870 | 15,83 |
C2H6 | 30,070 | 0,0033 | 0,10 |
C3H8 | 44,094 | 0,0012 | 0,05 |
н-C4H10 | 58,120 | 0,0004 | 0,02 |
C5H12 | 72,150 | 0,0001 | 0,01 |
CO2 | 44,010 | 0,0010 | 0,04 |
N2 | 28,010 | 0,0070 | 0,20 |
ИТОГО: | 1,0000 | 16,25 |
Определим элементарный состав топлива, % (масс.):
содержание углерода
содержание водорода
содержание кислорода
содержание азота
,
где niC , niH, niN , niO - число атомов углерода, водорода, азота и кислорода в молекулах отдельных компонентов, входящих в состав топлива;
- содержание каждого компонента топлива, масс. %;
xi - содержание каждого компонента топлива, мол. %;
Mi- молярная масса отдельных компонентов топлива;
Мm - молярная масса топлива.
Проверка состава:
C + H + O + N = 74,0 + 24,6 + 0,2 + 1,2 = 100 % (масс.).
Определим теоретическое количество воздуха, необходимое для сжигания 1 кг топлива, оно определяется из стехиометрического уравнения реакции горения и содержания кислорода в атмосферном воздухе. Если известен элементарный состав топлива, теоретическое количество воздуха L0, кг/кг, вычисляется по формуле:
кг/кг.
На практике для обеспечения полноты сгорания топлива в топку вводят избыточное количество воздуха, найдем действительный расход воздуха при α = 1,25:
L=αL0,
где L - действительный расход воздуха;
α - коэффициент избытка воздуха,
L=1,25∙17,0 = 21,25 кг/кг.
Удельный объем воздуха (н. у.) для горения 1 кг топлива:
где ρв = 1,293 – плотность воздуха при нормальных условиях,
м3/кг.
Найдем количество продуктов сгорания, образующихся при сжигании 1 кг топлива:
если известен элементарный состав топлива, то массовый состав дымовых газов в расчете на 1 кг топлива при полном его сгорании может быть определен на основании следующих уравнений:
кг/кг;
кг/кг;
кг/кг;
кг/кг,
где mCO2, mH2O, mN2, mO2 - масса соответствующих газов, кг.
Суммарное количество продуктов горения:
mп. с = mCO2 + mH2O + mN2 + mO2,
mп. с = 2,71 + 2,21 + 16,33 + 1,00 = 22,25 кг/кг.
Проверяем полученную величину:
где Wф - удельный расход форсуночного пара при сжигании жидкого топлива, кг/кг (для газового топлива Wф = 0),
кг/кг.
Поскольку топливо – газ, содержанием влаги в воздухе пренебрегаем, и количество водяного пара не учитываем.
Найдем объем продуктов сгорания при нормальных условиях, образовавшихся при сгорании 1 кг топлива:
где mi — масса соответствующего газа, образующегося при сгорании 1 кг топлива;
ρi - плотность данного газа при нормальных условиях, кг/м3;
Мi - молярная масса данного газа, кг/кмоль;
22,4 - молярный объем, м3/кмоль,
м3/кг; м3/кг;
м3/кг; м3/кг.
Суммарный объем продуктов сгорания (н. у.) при фактическом расходе воздуха:
V = VCO2 + VH2O + VN2 + VO2,
V = 1,38 + 2,75+ 13,06 + 0,70 = 17,89 м3/кг.
Плотность продуктов сгорания (н. у.):
кг/м3.
Найдем теплоемкость и энтальпию продуктов сгорания 1 кг топлива в интервале температур от 100 °С (373 К) до 1500 °С (1773 К), используя данные табл. 2.
Средние удельные теплоемкости газов ср, кДж/(кг∙К) Таблица 2
t, °С | O2 | N2 | CO2 | H2O | Воздух |
0 | 0,9148 | 1,0392 | 0,8148 | 1,8594 | 1,0036 |
100 | 0,9232 | 1,0404 | 0,8658 | 1,8728 | 1,0061 |
200 | 0,9353 | 1,0434 | 0,9102 | 1,8937 | 1,0115 |
300 | 0,9500 | 1,0488 | 0,9487 | 1,9292 | 1,0191 |
400 | 0,9651 | 1,0567 | 0,9877 | 1,9477 | 1,0283 |
500 | 0,9793 | 1,0660 | 1,0128 | 1,9778 | 1,0387 |
600 | 0,9927 | 1,0760 | 1,0396 | 2,0092 | 1,0496 |
700 | 1,0048 | 1,0869 | 1,0639 | 2,0419 | 1,0605 |
800 | 1,0157 | 1,0974 | 1,0852 | 2,0754 | 1,0710 |
1000 | 1,0305 | 1,1159 | 1,1225 | 2,1436 | 1,0807 |
1500 | 1,0990 | 1,1911 | 1,1895 | 2,4422 | 1,0903 |
Энтальпия дымовых газов, образующихся при сгорании 1 кг топлива:
где сCO2, сH2O, сN2, сО2 - средние удельные теплоемкости при постоянном давлении соответствующих газон при температуре t, кДж/(кг · К);
сt - средняя теплоемкость дымовых газов, образующихся при сгорании 1 кг топлива при температуре t, кДж/(кг К);
при 100 °С: кДж/(кг∙К);
кДж/кг;
при 200 °С: кДж/(кг∙К);
кДж/кг;
при 300 °С: кДж/(кг∙К);
кДж/кг;
при 400 °С: кДж/(кг∙К);
кДж/кг;
при 500 °С: кДж/(кг∙К);
кДж/кг;
при 600 °С: кДж/(кг∙К);
кДж/кг;
при 700 °С: кДж/(кг∙К);
кДж/кг;
при 800 °С: кДж/(кг∙К);
кДж/кг;
при 1000 °С: кДж/(кг∙К);
кДж/кг;
при 1500 °С: кДж/(кг∙К);
кДж/кг.
Результаты расчетов сводим в табл. 3.
Энтальпия продуктов сгорания Таблица 3
Температура | Теплоемкость продуктов сгорания сt, кДж/(кг∙К) | Энтальпия продуктов сгорания Ht, кДж/кг | |
°С | К | ||
100 200 300 400 500 600 700 800 1000 1500 | 373 473 573 673 773 873 973 1073 1273 1773 | 24,398 24,626 24,912 25,202 25,503 25,821 26,151 26,465 27,032 29,171 | 2439,8 4925,3 7473,6 10080,8 12751,7 15492,4 18305,6 21171,8 27032,0 43756,5 |
По данным табл. 3 строим график зависимости Ht = f(t) (рис. 1) см. Приложение.
потребляет большое количество топлива, тепловой и электрической энергии. Наряду с этими технологиями металлургического производства характеризуется значительным выходом вторичных энергетических ресурсов (ВЭР). По виду энергии ВЭР делятся на горючие (топливные), тепловые и избыточного давления. Горючие ВЭР - побочные газообразные продукты технологических процессов, которые могут быть использованы ...
... т. к. газы, отходящие из регенератора стекловаренной печи, достаточно чистые. В других случаях требуется еще установка специального фильтра, который бы отчистил газы перед тем, как они пойдут в теплообменник. Рис. 1. Рекуперативный теплообменник для утилизации теплоты отходящих газов. Горячая вода t = 95 °C Горячие отходящие ...
... экономии различных видов энергии. 2. Постановка задачи Проанализировать работу печи перегрева водяного пара и для эффективности использования теплоты первичного топлива предложить теплоутилизационную установку вторичных энергоресурсов. 3. Описание технологической схемы Печь перегрева водяного пара на установке производства стирола предназначена для повышения температуры ...
... объемы азота и водяного пара в продуктах сгорания ПГ. 1. ЦЕЛЬ РАБОТЫ 1.1 Ознакомиться с устройством котлов-утилизаторов 1.2 Получить практические навыки проведения термодинамического анализа эффективности агрегатов энерготехнологических систем и протекающих в них процессов. 2. СОДЕРЖАНИЕ РАБОТЫ 2.1 Проведение термодинамического анализа эффективности котла-утилизатора энергетическим и ...
0 комментариев