Содержание

Введение. 3

1.Применение безвольфрамовых твердых сплавов в сфере производства или потребления. 5

2.Классификационные признаки безвольфрамовых твердых сплавов. 8

3.Потребительские свойства безвольфрамовых твердых сплавов. 11

4.Технология производства безвольфрамовых твердых сплавов и её технологическая оценка. 14

5.Стандарты на твёрдые спеченные безвольфрамовые сплавы, нормируемые показатели качества в соответствии с требованиями стандартов......................................................................................................19

6.Контроль качества твердых спеченных безвольфрамовых сплавов, стандарты на правила приемки, хранения, испытания и эксплуатации товара…………. 22

Заключение. 44

Список использованных источников. 45

 


ВВЕДЕНИЕ

Твердые сплавы известны человеку уже около 100 лет. Изготавливаются они спеканием смеси порошков карбида вольфрама и кобальта, из-за чего их принято называть еще металлокерамическими. Спеченные твердые сплавы в зависимости от структуры и химического состава обладают рядом уникальных свойств, что позволяет их эффективно использовать в различных областях народного хозяйства. Однако возрастающие темпы развития производства требуют все большего объема выпуска режущего инструмента, штампов, пресс-форм, фильер и т.п. Это вызвало большой расход вольфрама. Возникшую проблему нехватки вольфрама во многих странах стали решать в первую очередь за счет повышения эффективности его использования.

Одно из направлений решения этой актуальной задачи – разработка новых марок твердых сплавов с применением карбидов титана TiC, гафния HfC, ниобия NbC, тантала TaC. Производство инструмента, оснащенного этими марками твердого сплава, позволяет заменить дефицитный вольфрам более дешевыми металлами, расширить номенклатуру используемых марок твердого сплава, что позволяет создать инструментальные материалы со специфическими свойствами, обладающими более высокими эксплуатационными характеристиками, применяющиеся для специальных видов работ.

В связи с расширением технологических возможностей при производстве твердых сплавов, развитием химии и порошковой металлургии, дефицитом вольфрама уже в начале 60-х годов начались интенсивные работы по созданию безвольфрамовых твердых сплавов.

В конце 60-х годов фирмами Corborundum Korp (США) и Montekatini Jedison (Италия) разработаны сплавы на основе нитридов и боридов (60% TaN и 40% ZrB2), карбидов и боридов (50% TiC и 50% TiB2). Эти сплавы отличаются высокой твердостью и износостойкостью.

В США, ФРГ, Австрии в начале 70-х годов налажено производство сплава Ферро-ТiC, который создан на основе карбида титана и стальной связки. Обладая высокой твердостью, износостойкостью и жаропрочностью, этот сплав является промежуточным между быстрорежущими сталями и твердыми сплавами. Он применяется для изготовления инструментов и конструкционных материалов, работающих в условиях интенсивного износа. Из него изготавливают детали штампов, пуансоны, протяжные кольца, валки, ролики, фильеры, режущие и измерительные инструменты.

В СССР разработаны безвольфрамовые твердые сплавы трех групп:

-    первая группа в качестве износостойкой составляющей содержит твердый карбид титана и ниобия (TiNb)С;

-    вторая – карбид титана (TiС);

-    третья - карбонитрид титана (TiСN).

В настоящее время для металлообработки создан целый ряд безвольфрамовых твердых сплавов на основе карбида и карбонитрида титана, которые применяются в различных сферах производства. Широко используются твердые безвольфрамовые сплавы марок ТН20, ТН50, КТН16, ЛЦК20, ТВ4.

Положительный опыт работы ряда организаций позволяет сделать вывод, что безвольфрамовые твердые сплавы найдут широкое применение для изготовления режущего и штампового инструмента, деталей машин, работающих в тяжелых условиях, оснастки и приспособлений.


Применение безвольфрамовых твердых сплавов в сфере производства или потребления

Безвольфрамовые твердые сплавы применяются для обработки металлов резанием и оснащения быстроизнашивающихся деталей машин и инструмента.

К примеру, из твердого сплава марки ТН20 изготавливается инструмент для чистового и получистового точения при непрерывном резании углеродистых низколегированных конструкционных сталей, цветных металлов, низколегированных сплавов никеля, серых чугунов и полиэтилена; для фрезерования деталей из чугуна.

Сплав марки КНТ16—для безструшковой обработки металлов, изготовления быстроизнашивающихся деталей машин и механизмов, приборов, торцевых уплотнительных колец химических насосов.

Применяются твердые сплавы также для изготовления прокат­ных валков.

Безвольфрамовые твердые сплавы выпускаются на основе карбида и карбонитрида титана – TiC—Ni—Mo, TiCN—Ni—Mo. Для стабилизации физико-механических свойств тугоплавкая составляющая и связка сплава дополнительно легируются рядом элементов ( W, Na, Zr, B, Hf ). Применение вакуумных процессов при изготовлении порошков и спекании позволяет получать сплавы плотной структуры со стабильными характеристиками.

Выпускаемые сплавы характеризуются:

-    высокой твердостью;

-    низкой плотностью;

-    высокой стойкостью к окислению;

-    низким коэффициентом трения с металлами;

-    малым адгезионным взаимодействием с контактируемыми материалами.

Альтернативой безвольфрамовым твердым сплавам являются сплавы на вольфрамовой основе. Но в последнее время их использование сокращается из-за дефицитности вольфрама.

Безвольфрамовые твердые сплавы мелкозернисты – основной размер зерна 0,8 – 1.0 мкм, пористость 0,1 – 0,2%. В отличие от сплавов WC – Co, WC – TiC – Co они имеют более низкий модуль упругости и более высокий коэффициент термического расширения, что предопределяет х большую чувствительность к ударным и тепловым нагрузкам. В то же время они обладают рядом преимуществ по сравнению со стандартными вольфрамосодержащими сплавами. Окалиностойкость безвольфрамовых твердых сплавов примерно на порядок выше, больше температура начала схватывания со сталью в вакууме примерно на 200˚С.

Эти различия в физических свойствах безвольфрамовых твердых сплавов и сплавов типа WC – Co, WC – TiC – Co объясняют особенности процесса резания. Исследования показали, что усадка стружки, силы резания и температура в зоне обработки при применении безвольфрамовых твердых сплавов ниже, чем для обычных стандартных сплавов.

Сопротивление окислению у титановых сплавов 1,2 — 2 раза выше, чем у вольфрамовых.

Аналогом металлокерамических изделий являются стальные, относительно дешевые. Несмотря на высокую стоимость деталей из твердых сплавов, в эксплуатации их относительная стоимость в конечном итоге оказывается много меньше стоимости стальных. Применение твердых сплавов при изготовлении штампов имеет ряд существенных преимуществ, в частности обеспечивает уве­личение стойкости инструмента в 20—50 раз, уменьшение простоев прессового оборудования за счет сокращения переналадок. Высокая стойкость штампового инструмента позволяет сократить его количество, а также получать более качественные детали со ста­бильными размерами. Опытно-промышленные партии безвольфрамовых твердых спла­вов типов ТМ, ТН, КНТ успешно применяются взамен легирован­ной стали для изготовления ряда работающих в условиях повы­шенного износа деталей.


Классификационные признаки безвольфрамовых твердых сплавов

Классификация безвольфрамовых твердых сплавов в зависимости от их свойств.

По назначению:

·     конструкционные;

·     инструментальные;

по химическому составу:

·     вольфрамовые;

·     безвольфрамовые;

по металлической основе:

·     вольфрамовые;

·     титановольфрамовые;

·     титанотанталовольфрамовые;

·     титановые;

·     ниобиймолибденовые;

·     миобиймолибденвольфрамовые;

по применению:

·     для режущего инструмента;

·     для штампового инструмента;

·     для прокатных валов;

по величине зерна:

·     мелкозернистые;

·     среднезернистые;

·     крупнозернистые;

Классификация по ТН ВЭД

Раздел XV – недрагоценные металлы и изделия из них.

Группа 81 – прочие недрагоценные металлы, металлокерамика и изделия из них.

Позиция 81 13 00 – металлокерамика и изделия из неё, включая отходы и лом.

Подсубпозиция:

-81 13 00 100 – металлокерамика необработанная, включая отходы и лом.

-81 13 00 200 - прочее

Классификация по ОКП РБ

Секция D – продукция перерабатывающей промышленности.

Подсекция DJ – основные металлы и готовые металлоизделия.

Раздел 27 – основные металлы.

Группа 27 4 – основные драгоценные металлы и металлы, планированные драгоценными металлами.

Класс 27 45 – прочие цветные металлы и изделия из них.

Категория 27 45 3 - прочие цветные металлы и изделия из них; металлокерамика; зола и остатки, содержащие металлы и соединения металлов.

Подкатегория 27 45 30 - прочие цветные металлы и изделия из них; металлокерамика; зола и остатки, содержащие металлы и соединения металлов.

Вид:

-27 45 30 500 – магний, берилий, хром и прочие цветные металлы и изделия из них; металлокерамика и изделия из неё.

- 27 45 30 570 – металлокерамика и изделия из неё, включая отходы и лом.

По ТН ВЭД классификация происходит по принципу характеристики вида сырья, из которого получают конечный продукт: безвольфрамовые твердые сплавы относят к изделиям из недрагоценных металлов; далее конкретизируется: из чего именно изготавливают изделия, проходя определенные стадии производства. Использование данной классификации в международной торговле наиболее рационально.

Для автоматизированной обработки информации при прогнозировании и учете номенклатуры промышленной и сельскохозяйственной продукции в Республике Беларусь используют ОКП РБ. В данной классификаторе товар изначально относят к определенной группе отраслей промышленности – твердые безвольфрамовые сплавы – один из продуктов перерабатывающей промышленности.


Потребительские свойства безвольфрамовых твердых сплавов

Наиболее важными свойствами металлокерамических твердых сплавов являются: твердость, вязкость, стойкость на истирание, удельный вес, теплопроводность и красностойкость. Все эти свойства тесно связаны одно с другим и оказывают большое влияние режущую способность твердых сплавов.

 Основным фактором, влияющим на все эти свойства, является химический состав твердых сплавов. Из всех перечисленных свойств теплопроводность и красностойкость являются свойствами независимыми, т. е. при изменении других свойств они могут оставаться ее или менее постоянными. Остальные же свойства не могут быть индивидуально изменяемы. Изменение состава сплава влечет за собой одновременное изменение всех свойств. Такие свойства как стойкость на истирание, удельный вес и твердость связаны между собой прямой зависимостью: чем выше удельный вес сплавов одного и того же состава, тем выше и твердость, и стойкость на истирание. Вязкость связана с твердостью обратной зависимостью: большей твердости соответствует меньшая вязкость и наоборот.

Твердость – способность материала сопротивляться проникновению в него другого более твердого тела. Твердость твердых сплавов зависит прежде всего от соотно­шения между количеством карбида и вспомогательного металла, т. е. твердость тем выше, чем больше карбида и меньше вспомо­гательного металла при всех прочих равных, условиях. Из сплавов одинакового состава твердость будет, больше у того сплава, кото­рый обладает большей плотностью.

На твердость оказывает влияние также зернистость сплава. Как правило, сплавы более мелкозернистые имеют большую твер­дость. Твердость является достаточно четким показателем окончания процесса спекания сплавов.

Вязкость – это способность материала выдерживать ударные нагрузки без разрушения. Вязкость может быть определена как:

-    сопротив­ление изгибу;

-    сопротивление разрыву;

-    сопротивление удару.

Стойкость на истирание – это способность сплава противостоять силе трения. Характер износа при резани зависит от природы сплава и обрабатываемого материала, но в основе износа лежит явление истирания при трении скольжения.

Теплопроводность - это способность сплава проводить тепло. Теплопроводность, относится к группе наименее изученных свойств, так же как электропроводность и магнитные свойства. Теплопроводность сплава не является аддитивным свойством, так как в сплаве практически происходит взаимодействие компонентов, а также имеется пористость. Это весьма важное свойство, особенно при обработке сталей, когда образуется сливная стружка. Меньшая теплопроводность твердых сплавов является положительным фактором.

Красностойкость - способность твердых сплавов сохранять свои механические свойства при нагреве до высокой температуры. Основным фактором, который влияет на это свойство, является химический состав сплавов. Чем выше тем­пература плавления исходных компонентов, и в первую очередь вспомогательного металла, тем выше и красностойкость сплава. У сплавов одного и того же типа красностойкость тем выше, чем меньше в них вспомогательного металла.

Удельный вес – это отношение плотности одного вещества к плотности другого, принимаемого за эталон при одинаковых температуре и давлении. Практический удельный вес твердых сплавов всегда ниже теоре­тически вычисленного. Это объясняется тем, что в сплаве всегда остается определенное количество пор. Удельный вес твердых сплавов является весьма важным их свойством, так как в нем собираются все важнёйшие показатели сплавов. Большому удельному весу соответствует хорошая плотность, большая вязкость, хорошая твердость, хорошие рабочие свойства.

Режущие свойства – это способность обрабатывать материалы резанием при определенной скорости и с определенной производительностью. Режущие свойства металлокерамических сплавов являются са­мым важным признаком, определяющим их качество и пригодность к работе. Основными же факторами, определяющими режущие качества резцов, являются стойкость и ско­рость резания. Под стойкостью понимается время, в течение которого резец остается острым. Под скоростью резания понимается такая скорость, при которой резец затупляется через 60 мин.

Микроструктура сплава – это строение и внутренние дефекты сплава, видимые при помощи увеличения под микроскопом.

Также важными показателями, определяющими потребительские свойства твердых сплавов, являются:

Предел прочности – (временное сопротивление разрыву) – условное напряжение, отвечающее наибольшей нагрузке, предшествующей разрушению образца.

Ударная вязкость – способность сплава выдерживать ударные нагрузки без разрушения.

Макроструктура – строение и внутренние дефекты сплава, видимые невооруженным глазом или с помощью лупы при увеличении до х 25.

Удельное электрическое сопротивление – свойство электропроводника, вычисляемое как отношение напряжения, прилагаемого к проводнику, к току, проходящему через него.

Плотность – отношение массы к объему для данного вещества.

Магнитная проницаемость – отношение плотности магнитного потока в теле ко внешнему магнитному полю, порождающему этот поток.

Модуль нормальной упругости Е (модуль Юнга) – постоянная упругость, представляющая собой отношение нормального напряжения и соответствующего относительного удлинения при растяжении (сжатии) в пределах закона Гука.


Технология производства безвольфрамовых твердых сплавов и её технологическая оценка

Безвольфрамовые твердые сплавы получают методом порошковой металлургии.

Технологический процесс состоит из следующих операций:

ü   взвешивание компонентов;

ü   мокрый размол и перемешивание порошков в шаровых мельницах;

ü   выпаривание ацетона;

ü   первое просеивание;

ü   приготовление пластификатора;

ü   замешивание смеси с пластификатором;

ü   выпаривание бензина;

ü   второе просеива­ние;

ü   контроль твердосплавной смеси;

ü   прессование;

ü   сушка изделий;

ü   спекание изделий;

ü   контроль качества изделий;

ü   механическая обработка пластин - шлифование и доводка, маркировка изделий.

Получение чистых металлов (см. блок-схему 4.1;4.2)

Для того чтобы получить карбид высокого качества, сначала восстанавливают металлы из их соединений.

Существует довольно много способов получения чистых порошкообразных металлов, однако промышленное значение получили лишь следующее:

o     восстановление Н2 из окисей;

o     восстановление С из окисей;

o     восстановление Na из окисей;

Первым способом восстанавливают W, Co, Ni, Fe.

Вторым – только W, так как Co, Ni, Fe получаются грубозернистыми и загрязняются карбидами, что недопустимо.

Третьим способом получают Ta и Nb.

В нашем случае металлы восстанавливают при помощи водорода. Оксид металла подвергается воздействию Н2 по общей схеме:

МехОу + Н2 → Ме + Н2О

Карбонизация металлов

Следующей стадией является карбонизация металлов. Для этого восстановленные металлы смешивают с сажей. Реакция идет по схеме:

Ме + С → МехСу + Q

Просеивание

Порошки разделяют на фракции по величине частиц с использованием вибросит. Разделение происходит также с помощью воздушных сепараторов и седиментации (разделение жидких смесей).

Смешивание карбидов (см. блок-схему 4.3)

Приготовление однородной по объему механической смеси осуществляют путем смешивания порошков в специальных смесителях. Это является одной из основных операций в производ­стве спеченных твердых сплавов. От условий выполнения этой операции в значительной степени зависят свойства продукта-изделия.

Мокрый размол

В условиях мокрого размола происходит не только разру­шение конгломератов, но и измельчение зерен карбида и их смешивание со связующими металлами. Это достигается не столько ударным, сколько истирающим действием шаров при их движении внутри вращающегося барабана-мельницы.

Большое значение в процессе размола имеют также интенсивность и продолжительность размола смеси, ее соотношение с жидкостью и шарами, размер шаров.

Выпаривание ацетона

Для удаления ацетона из смеси используется вакуумный выпариватель. Вакуумное выпаривание необходимо для предотвращения окисления смеси.

Температура нагрева 70-800С, продолжительность про­цесса 8-16 ч при объеме выпаривателя 10 л.

Первое просеивание

Для улучшения процесса перемешивания порошка и пластифи­катора и удаления посторонних примесей высушенная и охлажден­ная смесь просеивается на виброситах.

Приготовление пластификатора

Процесс заключается в получении однородного раствора пластификатора, применяемого для приготовления твердосплав­ных смесей перед прессованием. Пластификатор применяется в целях повышения пластичности спрессованных изделий и улучшения прессуемости смесей.

Каучук синтетический в необходимом количестве промыва­ется от талька, размягчается в горячей воде в течение суток, измельчается и затем засыпается в реактор якорной мешалки, туда же заливается авиационный бензин типа Б-70 по ГОСТ 1012-72. В реакторе ведется непрерывное перемешивание до полного растворения каучука (8-10 ч). Затем раствор фильт­руется через тампон из двух слоев марли и ваты. Раствор синтетического каучука должен быть 7,5-8,5%. Зольность раствора не должна превышать 0,04%.

Замешивание с пластификатором

Порция смеси взвешивается на весах и засыпается в сме­ситель. Раствор СК в бензине нужной концентрации подается в смеситель тонкой струйкой (из расчета 3,5-4 л раствора на 100 нл смеси).

Выпаривание бензина

Приготовленная смесь выгружается на противень из нержа­веющей стали и помещается в сушильный шкаф.

Выпаривание бензина производится в сушильных шкафах СНВС-4, 5, 3, 4/ЗИ при температуре 120°С в течение 3-4 ч при периодическом перемешивании смесей (каждые 20-30 мин).

Второе просеивание

Для улучшения процесса прессования и удаления посторонних примесей высушенная и охлажденная смесь просеивается на виброситах с применением сетки № 035-045.

Контроль твердосплавной смеси

После размола и перемешивания контроль твердосплавного порошка осуществляется с помощью химического анализа, а до операции просеивания - методом контрольных образцов. Из каждой партии порошка прессуется по 5-10 штук контроль­ных образцов размерами 5x5x35 мм, спекаются и проверяют их физико-механические свойства.

Прессование изделий из твердосплавного порошка

Прессование изделий из твердосплавного порошка производится в разъемных пресс-формах на пресс-автоматах. Для достижения равномерной плотности заготовки по объему применяет­ся метод двухстороннего прессования. Давление, при котором прессованием получают заготовки из смесей дгя производства твердых сплавов, обычно 5000-15000 МПа и зависит от количества и качества введенного в смесь пластификатора.

Расчет навески при прессовании изделий из твердосплав­ного порошка производится по формуле:

Р = 1,02Vd, где Р – масса навески, кг; V – объем изделия в спеченном виде, м3; d – плотность

Коэффициент 1,02 компенсирует потери массы при спекании (за счет выгорания каучука).

Сушка изделий

Сушка изделий производится в сушильном шкафу при температуре 120-140°С. Время сушки от 2-10 ч в зависимости от размеров и массы изделия.

Спекание твердосплавных изделий

Спекание производится в вакуумных печах. Спекание изделий из сплава типа ТП производится при температуре 1300-1400°С (сплавы Т и ТН при температуре 1450-1650°С) с выдержкой 20-30 мин. Получение высококачественных изделий обеспечивается спеканием при вакууме. Продолжительность операции спекания 6-8 ч в зависимости от количества изделий. Производительность печи 2-3 т в год при односменной работе.

Контроль качества твердосплавных изделий

Форма, линейные и угловые размеры, радиусы сопряжений режущих кромок и других поверхностей, а также допустимые отклонения на размеры изделий должны соответствовать требованиям ГОСТ 2209-82. Годные изделия, не имеющие трещин расслоя и выкрашивания, сдаются на маркирование или механическую обработку (выполняется по мере необходимости).

Механическая обработка изделий

В твердых сплавах в зависимости от условий спекания уже в исходном состоянии могут формироваться напряжения сжатия и растяжения, глубина которых не превышает 0,1 мм. Для достижения высокой точности и качества» поверхности пластины из твердых сплавов после спекания подвергаются механической обработке на плоскошлифовальном прецизионном станке.

Технология производства изделий из сплава Т, ТН и ТП такая же, как у стандартных твердых сплавов за исключением температуры спекания, которая несколько выше, чем у сплавов ВК8 и Т15К6.


Стандарты на твёрдые спеченные безвольфрамовые сплавы, нормируемые показатели качества в соответствии с требованиями стандартов

К твердым безвольфрамовым сплавам в соответствии с ГОСТ 26530-85 Сплавы твердые спеченные безвольфрамовые относятся сплавы марок ТН20, КТН16, Т30К4, Т15К6, Т14К8, Т5К10, Т8К7, ТТ7К12, ТТ8К6, ТТ10К8-Б, ТТ20К9

Нормируемые показатели качества по ГОСТ 26530-85 «Сплавы твердые спеченные безвольфрамовые»

Настоящий стандарт распространяется на напаиваемые и сменные изделия из твердых спеченных сплавов, предназначенных для режущих инструментов при обработке резанием металлов и неметаллических изделий.


Информация о работе «Технология производства и потребительские свойства сплавов твердых безвольфрамовых»
Раздел: Промышленность, производство
Количество знаков с пробелами: 65021
Количество таблиц: 2
Количество изображений: 0

0 комментариев


Наверх