1.2 Параметры ультразвуковых волн

Ультрозвуковые волны характеризуются следующими основными параметрами: длиной волны λ (м), скоростью распространения волн С (м/с), колебательной скоростью частиц среды V (м/с), частотой f (Гц).

Главный параметр любой волны – длина волны λ. Она равна отрезку пути, пробегаемому волной за период Т времени, в течение которого происходит полный цикл одного колебания, т.е. λ=С.Т. Для продольных волн, например, это некоторое постоянное значение расстояния через которое чередуется зоны сжатия и разрежения, для поперечных – участки сдвига вверх – вниз. Длина волны λ – это внутренняя согласованная мера, относительно которой определяются и через которую связаны многие параметры волн, аппаратуры, среды.

Если учесть, что Т=1/f, то λ представляется в виде

Это основное соотношение в теории колебаний. Оно справедливо для всех волновых процессов. Отметим важное обстоятельство. Частота f является характеристикой источника колебаний, возбуждающего волну, скорость С – константа материала среды, в которой данная волна движется. В силу этого (2) является физически правильной записью соотношения между λ, С и f. Другие математические верные записи формулы (2) ( f=c/ λ или с= λ.f)самостоятельного физического смысла не имеют.

Длина волн для принятой в МПС частоты 2,5 МГц составляет миллиметры. Поэтому детали размером в десятки миллиметров можно считать бесконечными, что дает основание рассматривать существование продольных и поперечных волн раздельным, независимым.

Фронт волны – граница, отделяющая колеблющейся частицы от частиц среды, еще не начинавших колебаться. В зависимости от вида поверхности фронта волны последнюю разделяют на плоскую – возбуждается колеблющейся плоскостью, которая должна быть бесконечной; сферическую – возбуждается точечным источником колебаний; цилиндрическую – возбуждается источником колебаний, представляющим собой длинный цилиндр малого диаметра, например нить.

Плоской волны не существует, так как для ее излучения требуется бесконечная плоскость и, следовательно, бесконечная мощность, что не возможно. Реальные источники создают сферические волны, но плоская волна удобна для анализа и моделирования процессов ультразвукового контроля. Если использовать точечный источник колебаний, то на большом расстоянии от него, по крайней мере, превышающем длину волны, сферическую волну в первом приближении можно считать плоской.

Колебательная скорость v движения частиц. Ее следует отличать от понятия скорости. С распространения волны. Если последняя характеризует скорость распространения возбуждения или определенного состояния среды (сжатия или положения «гребня»), то колебательная скорость характеризует скорость механического движения частиц в процессе их смещения относительно положения равновесия, т.е. .

Важно понятие акустического импеданса

Z= ρC, (1)

Его называют еще удельным акустическим сопротивлением. Если сопротивление Z имеет большее значение, то среда называется «жесткой» (акустически твердой): колебательные скорости V и смещения ξ частиц малы даже при высоких давлениях. Если же импеданс Z невелик, то среда называется «мягкой» (податливой): даже при малых давлениях Р достигаются значительные колебательные скорости V и смещения ξ. Таким образом, давление в волне прямо пропорционально акустическому сопротивлению Z и колебательной скорости V движения частиц .

Интенсивность I является энергетическим параметром волны. Она характеризует количество энергии, которое упругая волна несет в направлении своего распространения в единицу времени 1 с через поперечное сечение площадью 1 м2 под углом θ к его нормали.

 

1.3 Затухание ультразвуковых волн

По мере удаления фронта ультразвуковой волны от источника ее амплитуда, давление и интенсивность падают и убывают по закону экспоненты, что обусловлено затуханием. Оно определяется физико-механическими характеристиками среды и типом волны и учитывается коэффициентом затухания δ, который складывается из коэффициентов поглощения δП и рассеяния δр, 1/м:

 (2)

При рассеянии поток звуковой энергии остается звуковым, но уходит из направленно-распространяющегося пучка. Металлы, применяемые на практике, имеют зернистую структуру. Размеры зерен зависят от химического состава, вида механической и термической обработки деталей. Затухание волн в них обуславливается двумя факторами: рефракцией и рассеянием вследствие анизотропии механических свойств. В результате рефракции фронт волны отклоняется от прямолинейного направления распространения, и амплитуда принимаемых сигналов резко падает. Кроме того, волна, падающая на поверхность границы зерна, испытывает частичное отражение и преломление ультразвука и трансформацию, что и определяет механизм рассеяния. Рассеяние в отличие от фракции приводит не только к ослаблению сигнала, но и к образованию шумов. Явление рассеяния тем сильнее, чем больше средний размер зерна по сравнению с длиной ультразвуковой волны.

Явления поглощения и рассеяния ослабляют ультразвуковую волну тем сильнее, чем больший путь в среде она проходит.


Информация о работе «Ультразвуковой контроль ближней подступной части оси колесной пары»
Раздел: Промышленность, производство
Количество знаков с пробелами: 39336
Количество таблиц: 1
Количество изображений: 6

0 комментариев


Наверх