ВВЕДЕНИЕ

Создание энергосистем и объединение их между собой на огромных территориях стало основным направлением развития электроэнергетики мира в 20 веке. Это обусловлено отличительной особенностью отрасли, в которой производство и потребление продукции происходят практически одновременно. Невозможно накопление больших количеств электроэнергии, а устойчивая работа электростанции и сетей обеспечивается в очень узком диапазоне основных параметров режима. В этих условиях надежное электроснабжение от отдельных электростанций требует резервирование каждой станции, как по мощности, так и по распределительной сети.

Известно, что объединенная работа энергосистем позволяет уменьшить необходимую установленную мощность в основном за счет разновременности наступления максимумов электрической нагрузки объединения, включая и поясной сдвиг во времени, сокращения необходимых резервов мощности вследствие малой вероятности одновременной крупной аварии во всех объединяемых системах.

Кроме того, удешевляется строительство электростанций за счет укрупнения их агрегатов и увеличения дешевой мощности на ГЭС, используемой только в переменной части суточного графика электрической нагрузки. В объединении может быть обеспечено рациональное использование энергомощностей и энергоресурсов за счет оптимизации режимов загрузки различных типов электростанций.

Но главным преимуществом энергообъединения является возможность широкого маневрирования мощностью и электроэнергией на огромных территориях в зависимости от реально складывающихся условий. Дополнительное электросетевое строительство, связанное с созданием энергообъединений, не требует больших затрат, так как при их формировании используются в основном линии электропередачи, необходимые для выдачи мощности электростанций, а затраты на них с лихвой окупаются удешевлением строительства крупной электростанции по сравнению с несколькими станциями меньшей мощности. И, следовательно, только объединенная работа энергосистем позволяет обеспечить более экономичное, надежное и качественное электроснабжение потребителей.

Однако параллельная работа энергосистем на одной частоте требует создания соответствующих систем управления их функционированием, включая и противоаварийное управление, а также координации развития энергосистем. Это обусловлено тем, что системные аварии в большом объединении охватывают огромные территории и при современной «глубине» электрификации жизни общества приводят к тяжелейшим последствиям и огромным ущербам.

Поскольку электроэнергия «не складируется», при возникновении дефицита она не может быть свободно куплена на мировом рынке и доставлена в любое место, как и другие продукты и товары. Поэтому обеспечение надежного и экономичного электроснабжения требует заблаговременного начала строительства новых генерируемых источников и электрических сетей, так как энергетические объекты весьма дороги и трудоемки. При этом необходимо обеспечить рациональный состав этих источников по используемым энергоресурсам, их основным техническим характеристикам; их регулировочным возможностям в суточном, недельном и годовом разрезе, а также их размещение.

Для этого необходима координация развития энергосистем и энергообъединений путем прогнозирования, как на долгосрочную, так и на краткосрочную перспективу, которое должно периодически повторяться. Последнее обусловлено тем, что все исходные данные для прогнозирования весьма неопределенны даже в условиях плановой экономики страны. Очевидно, что в условиях рыночной экономики эта неопределенность многократно возрастает.


1. ОБЩАЯ ЧАСТЬ

1.1  Краткая характеристика электрооборудования ТП

Механический цех машиностроительного завода предназначен для серийного производства изделий. Для этой цели установлено основное оборудование: обдирочные, шлифовальные, анодно-механические станки и др.

На стороне 10 кВ трансформатора установлена ячейка КСО-366, с выключателем нагрузки, трансформатором тока и трансформатором напряжения. Так же установлены шины и изоляторы.

Защита от токов короткого замыкания на стороне 0,4 кВ выполнена автоматическими выключателями серии ВА51Г-25.

Распределительная сеть выполнена шинопроводом марки ШМА 73У3, двумя распределительными шинопроводами марки ШРА-4 и ШРА2, так же распределительным шкафом серии ПР85. Соединение с электроприемниками осуществляется проводами марки АПРТО. Соединение шинопроводов и распределительного шкафа осуществляется кабелями марки АПВГ.

Наименование Количество

Pном,

кВт

Ки

Cos /

tg

ПВ, %

Pn,

кВт

Шлифовальные

станки

5 63 0,14 0,5/1,5

Обдирочные

Станки типа РТ-341

5 35 0,17 0,65/0,76
Кран мостовой 1 38 0,1 0,5/1,5 40 60
Обдирочные станки типа РТ-250 6 28 0,17 0,65/0,76
Анодно-механические станки типа МЭ-31 8 17,2 0,17 0,65/0,76
Анодно-механические станки типа МЭ-12 9 8 0,17 0,65/0,76
Вентилятор вытяжной 1 25 0,6 0,8/0,6
Вентилятор приточный 1 28 0,6 0,8/0,6

1.2 Ведомость электрических нагрузок


2. РАСЧЕТНО – ТЕХНИЧЕСКАЯ ЧАСТЬ

2.1 Определение электрических нагрузок от силовых потребителей.

Таблица 2.1 Исходные данные.

Наименование Количество

Pном,

кВт

Ки

Cos /

tg

ПВ, %

Pn,

кВт

Шлифовальные

станки

5 63 0,14 0,5/1,5

Обдирочные

Станки типа РТ-341

5 35 0,17 0,65/0,76
Кран мостовой 1 38 0,1 0,5/1,5 40 60
Обдирочные станки типа РТ-250 6 28 0,17 0,65/0,76
Анодно-механические станки типа МЭ-31 8 17,2 0,17 0,65/0,76
Анодно-механические станки типа МЭ-12 9 8 0,17 0,65/0,76
Вентилятор вытяжной 1 25 0,6 0,8/0,6
Вентилятор приточный 1 28 0,6 0,8/0,6

Рассчитываем среднесменную активную мощность: (2. 1)

 

Определяем коэффициент силовой сборки:

(2. 2)

Определяем средний коэффициент использования:

 (2. 3)

Определяем сумму номинальных мощностей электроприемников: Определяем эффективное число электроприемников:

 (.2. 4)

Определяем коэффициент максимума:

[1., с. 54, таб. 2.13]

Определяем максимальную активную мощность:

(2. 5)

Определяем среднесменную реактивную мощность:

(2. 6)

т.к. , то

Определяем полную максимальную мощность:

(2. 7)

Таблица 2.2 Расчетные данные.

Наименование ∑Pном,кВт m Pсм, кВар Qсм, кВар Kmax

Pmax,

кВт

Qmax,кВар Smax,кВар

Шлифовальные

станки

315 - 44,1 66,1 - - - - -

Обдирочные

Станки типа РТ-341

175 - 30 22,8 - - - - -
Кран мостовой 38 - 19 28,5 - - - - -
Обдирочные станки типа РТ-250 168 - 28,5 21,6 - - - - -
Анодно-механические станки типа МЭ-31 137,6 - 23,4 17,8 - - - - -
Анодно-механические станки типа МЭ-12 72 - 12,2 9,2 - - - - -
Вентилятор вытяжной 25 - 15 11,2 - - - - -
Вентилятор приточный 28 - 17 12,7 - - - - -
Итого: 959 8 170 190 6 2,24 381 209 255


Информация о работе «Электроснабжение механического цеха машиностроительного завода»
Раздел: Промышленность, производство
Количество знаков с пробелами: 37264
Количество таблиц: 5
Количество изображений: 20

Похожие работы

Скачать
67198
28
3

... оказывают влияние такие факторы, как степень ответственности электроприемников, режим их работы и размещение на территории цеха. Цеховые сети промышленного предприятия выполняется на напряжение до 1 кВ (наиболее распространенным является напряжение 0,38 кВ). При проектировании системы электроснабжения необходимо правильно установить характер среды, которая оказывает решающее влияние на степень ...

Скачать
125619
17
5

... или двигателя. ·  Местное управление – это управление приводом выключателя, разъединителя и другой аппаратуры непосредственно на месте. ·  Автоматическое управление – его используют в системе электроснабжения предприятий с большой потребляемой мощностью. Автоматическое управление осуществляется с помощью вычислительных машин управления ВМУ. Информация, поступающая в ВМУ, обрабатывается и ...

Скачать
124039
16
9

... , то установка на подстанции компенсирующих устройств экономически оправдана. 3.9 Основные технико-экономические показатели системы электроснабжения механического цеха Основные технико-экономические показатели системы электроснабжения цеха приводятся в таблице 3.8. Таблица 3.8 – Основные технико-экономические показатели Показатель Количественное значение Численность промышленно- ...

Скачать
30331
4
0

... 280 А, трехполюсный, с 16 отходящими линиями с предохранителями типа НПН-100. 2.4 Расчет токов короткого замыкания и проверки элементов в характерной линии электроснабжения 2.4.1 Общие сведения о КЗ При проектировании СЭС учитываются не только нормальные, продолжительные режимы работы ЭУ, но и их аварийные режимы. Одним из аварийных режимов является короткое замыкание. Коротким замыканием ...

0 комментариев


Наверх