2.3 Печи с железным сердечником

Плавильная индукционная печь с железным сердечником (рисунок 4) состоит из футерованной рабочей емкости шахтного или барабанного типа, где сосредоточена основная масса металла, железного сердечника (магнитопровода) с индуктором и узкого канала, заполненного металлом. Если рассматривать эту печь как трансформатор с первичной обмоткой-индуктором, то канал играет роль одновитковой вторичной обмотки. Тепло­выделение происходит в металле, находящемся в канале. Расплавленный металл, вследствие разности плотностей, а также возникающих в нем электродинамических усилий циркулирует между каналом и шахтой печи, отдавая тепло находящемуся в ней металлу. Угар металла очень мал, так как нагрев до высокой температуры происходит в канале, изолированном от окружающей среды.

Футеровка канала (подовый камень) работает в очень тяжелых условиях, поскольку интенсивное движение перегретого до высокой температуры металла приводит к ее разрушению. Футеровку подового камня выполняют обычно набивной по металлическому шаблону с последующим обжигом и спеканием непосредственно в печи; металлический шаблон при этом расплавляется. Для набивки используют массу на кварцитовой, магнезитовой и корундовой основах с применением в качестве связующих добавок огнеупорной глины, молотого стекла, борной кислоты и буры. Стойкость футеровки подового камня при плавке цветных металлов и сплавов составляет несколько тысяч плавок. При плавке чугуна, имеющего температуру разливки 1400—1450 °С, стойкость футеровки подового камня обычно не превышает 500 плавок.

Индуктор имеет обычно принудительное воздушное охлаждение, осуществляемое при помощи вентилятора; иногда витки индуктора изготовляют из трубки и охлаждают водой.

Питание плавильных печей с железным наконечником проводится током промышленной частоты с напряжением 220—1000 В через автотрансформаторы, позволяющие регулировать подводимую к печи мощность. Для повышения сos φ в схему питания включают конденсаторы.

В индукционных печах с железным сердечником необходимо при сливе расплавленного металла часть его (20— 30 % массы расплава) оставлять в печи с тем, чтобы канал был заполнен жидким металлом, т. е. чтобы была замкнута вторичная обмотка. Этот остаток называют «болото» и загрузку твердой шихты ведут порциями на поверхность расплава; постепенно весь металл, загруженный в рабочую емкость, расплавляется. Иначе нагреть шихту до плавления невозможно. Это обстоятельство очень затрудняет переход с плавки одного сплава на другой. Индукционные плавильные печи с сердечником имеют на 20—30 % более высокий к. п. д., чем индукционные тигельные, они значительно дешевле и занимают меньшую площадь. Однако низкая стойкость футеровки канала при высоких тем­пературах также ограничивает область применения подоб­ных печей, используемых в основном для плавки цветных металлов сплавов и чугуна и в качестве миксеров для чугуна, выплавленного в вагранках.

Разработан ряд серийных индукционных печей — миксеров с железным сердечником и каналом типа ИЧКМ, предназначенных для выдержки литейных чугунов, с емкостью 2,5—100 т, мощностью 400—2000 кВт, расчетной производительностью 6—50 т/ч.

Удельный расход электроэнергии невелик и составляет в среднем при выдержке чугуна в таких индукционных миксерах 240—140 кДж/кг.

Индукционный нагрев металла для различных целей, начиная с нагрева перед обработкой давлением и кончая термической обработкой сортового проката и отливок является очень перспективным. Выделение тепла внутри самого нагреваемого металла позволяет обеспечить очень высокие скорости нагрева при минимальном образовании слоя рейдов на поверхности, без возникновения значительной разности температур по сечению и, следовательно, без термических напряжений. Возможность нагрева поверхностного слоя металла создает предпосылки для поверхностной термической обработки, которая трудно осуществима при других способах нагрева.

В промышленной практике индукционные установки получили широкое распространение в кузнечном производстве для нагрева заготовок круглого или квадратного сечения диаметром (или стороной квадрата) от 15 до 150 мм до температуры 1200 °С. Выпускается серия кузнечных индукционных нагревателей типа ИН, работающих на токе повышенной частоты. Схема рабочего модуля, из которых собираются эти установки, показана на (рисунке 5), (без устройств для перемещения заготовок и ро­ликов, устанавливаемых между индукторами для обеспечения транспортировки металла через нагреватель). Заготовки проходят через индукторы, которые представляют собой соленоиды.

Сечение соленоидов в зависимости от сечения нагреваемых заготовок, круглое или прямоугольное. Соленоиды выполняются водоохлаждаемыми из медной трубки. Поверхность трубок защищается надежной электрической изоляцией, и соленоиды заливаются в блоки из огнеупорного бетона. Внутри соленоидов устанавливаются водоохлаждаемые направляющие из немагнитной стали для перемещения заготовок с помощью толкателя. Нагревательные установки типа ИН собираются в секции из стандартных модулей, каждый из которых имеет длину индуктора 500 мм. Соединяя секции в группы последовательно и параллельно, получают необходимую производительность и мощность нагревательной установки. Производительность установок типа ИН составляет от 450 (1 модуль) до 10 000 кг/ч (20 модулей). При нагреве прутков диаметром 70—150 мм индукторы питаются током с частотой 1 кГц, диаметром 35—120 мм 2,4 кГц, диаметром 25—90 мм 4 кГц, диаметром 15—50 мм 10 кГц. Мощность одного модуля составляет 250 кВт.

Для подогрева трубных заготовок в станах теплой прокатки применяются индукционные нагревательные установки типа ОКБ-958, работающие на токе с частотой 8 кГц. В этих установках трубы диаметром от 32 до 108 мм с толщиной стенок от 1,5 до 12 мм нагреваются до 400 °С. В зависимости от диаметра труб производительность составляет 160 до 1200 кг/ч.

Для нагрева стальных слитков диаметром от 130 до 360 мм и длиной 420—700 мм перед ковкой (до температуры 1250 °С) предназначены установки серии ИНМ мощностью 1000—1300 кВт с производительностью 3—3,2 т.

Эти установки питаются током промышленной частоты. Слитки перемешаются через три последовательно установленных индуктора с помощью толкателя. Между индукторами предусмотрены промежуточные рольганги с дополнительными толкателями.

Имеется опыт успешной эксплуатации установки индукционного нагрева слябов толщиной 300 мм перед их прокаткой на штрипсовом стане одного из зарубежных заводов.

Нагрев осуществляется в трех последовательно расположенных индукционных камерах. Первая камера предназначена для передачи слябу максимального количества, тепла в кратчайшее время и имеет наибольшую мощность.

Во второй камере также происходит нагрев сляба, но она позволяет одновременно выдерживать его для получения равномерного прогрева по сечению и ее мощность в два раза меньше. Третья индукционная камера, мощность которой еще в два раза меньше, предназначена для выдержки ме­талла.

В каждой из индукционных камер используется прямоугольная индукционная катушка, окружающая установленный на узкую грань сляб (рисунок 6). Передача сляба из одной камеры в другую осуществляется при помощи тележек и индивидуальных подъемных механизмов, вводящих слябы через открытую нижнюю часть в каждую из нагревательных камер. Надежный контроль температуры в индукционной камере достигнут с помощью убирающейся контактной термопары.

Установка индукционного нагрева рассчитана на загрузку холодных, теплых и горячих слябов. Теплые слябы поступают в нагревательные камеры с температурой 200 – 500 °С, горячие — с температурой 500—700 °С. Перед загрузкой слябов в индукционные камеры проверяют качество их поверхности и длину. Слябы поднимают затем на тележки и загружают на подъемный под, укладывая их на ребро. Выдача слябов для прокатки осуществляется из камеры выдержки. Весь комплекс операций от взятия из штабелей слябов, поступающих с машины непрерывного литья, и до выдачи их из установки на рольганг прокатного стана автоматизирован и находится под контролем одного оператора. Питание всех камер индукционного нагрева осуществляется током промышленной частоты через авто­трансформаторы. В схеме питания предусмотрены конденсаторные батареи для коррекции cos φ, который равен 0,85.

Установка такого типа для индукционного нагрева слябов, состоящая из шести параллельных линий (в каждой линии по три камеры), обеспечивает производительность до 600 т/ч. При количестве горячих слябов 20 °/о, теплых 60 % и холодных 20 %, средний удельный расход электроэнергии составляет 1050 кДж/кг (0,29 кВт-ч/кг), а потери металла с окалиной не выше 0,5—0,8 % при практическом отсутствии обезуглероживания поверхности. Эти данные позволяют считать индукционный нагрев слябов вполне конкурентоспособным по отношению к нагреву в топливных печах, особенно в тех районах, где доступна дешевая электроэнергия и когда предъявляют повышенные требования к качеству нагрева и потери металла с окалиной жестко регламентируют.

Представляет несомненный интерес и комбинированный нагрев сравнительно тонких заготовок толщиной 70— 100 мм, особенно из легированных сталей, для которых недопустимо образование окалины на поверхности. В этом случае нагрев до температур, при которых поверхность ста­ли еще не взаимодействует активно с раскаленными продуктами сгорания (до 700—750 °С), осуществляется в обычных топливных методических печах, а окончательный нагрев до температуры прокатки (1250—1300 °С), когда поверхность стали, подвергается интенсивному окислению обезуглероживанию, проводится в индукционных нагревателях. Время достижения этой температуры меньше одной минуты. Такая технология нагрева позволяет резко снизить окалинообразование, и поверхностное обезуглероживание стали, и обеспечивает высокую степень гибкости работы всей системы. В случае снижения темпа работы стана холодные заготовки пропускают только через индукционные нагревательные установки. В этом случае время их нагрева составляет около двух минут.

Индукционные нагреватели, используемые в этой установке представляют собой простые соленоиды, сквозь которые (по оси) перемещают нагреваемые заготовки. Соленоиды выполняются из медной трубки и охлаждаются протекающей по ней водой. Питание индукторов осуществляется током частотой 3000 Гц от машинного генератора. Для уменьшения тепловых потерь от нагреваемых заготовок в окружающую среду предусматривается футеровка индукторов огнеупорными материалами.

Индукционный нагрев в прокатном производстве находит также применение для промежуточного подогрева на сортовых многоклетьевых станах, где температура заготовки сильно снижается в процессе прокатки. Так, при начальном сечении заготовки 120X120 мм и конечном 36X36 мм установка между клетями стана индукционной нагревательной секции длиной 3 м и индукционной томильной секции длиной 2 м позволяет повысить в процессе прокатки температуру заготовки на 150—200 °С. Для этой цели требуется мощность индукционной установки около 600 кВт при частоте питающего тока 3000 Гц. Подаваемая мощность зависит от производительности стана. Включение индукционной установки производится автоматически по сигналу от фотоэлемента, установленного, после 1-й клети стана. Конструкция индукторов аналогична описанной выше.

Индукционный нагрев получил очень широкое распространение для термической обработки различных деталей проката, в частности, для поверхностной закалки, для которой он исключительно удобен и эффективен. Так, при производстве рельсов осуществляют поверхностную закалку их головок. Благодаря питанию индуктора током повышенной частоты возникает поверхностный эффект и плотность тока на поверхности металла оказывается выше, чем в середине. В результате нагрев головки рельса происходит неравномерно, и значительная часть мощности выделяется в поверхностном слое металла.

Для непрерывно-последовательной закалки головок рельсов применяют плоский индуктор, изготовляемый из медной трубки прямоугольного сечения и представляющий собой плоскую обмотку (рисунок 7). Водоохлаждаемый индуктор, к которому подводится ток высокой частоты от генератора, равномерно перемещают вдоль рельса с помощью электромеханического привода. Ускоренное охлаждение нагретого участка поверхности закаливаемого рельса осуществляется обрызгиванием его водой, подаваемой через специальные отверстия в ребрах индуктора. Такая термообработка рельсов позволяет резко повысить их качество и увеличить срок службы.


3 Установки для плавки во взвешенном состояния

 

3.1 Общая характеристика

Как уже отмечалось ранее, электромагнитные волны, создавае­мые индуктором, помимо теплогенерации создают в проводящей среде электромагнитные силы, сжимающие и перемешивающие жидкий металл. При достаточной напряженности магнитного поля силы электродинамического давления могут уравновесить силу тяжести данного объема металла, что позволяет плавить и удерживать металл во взвешенном состоянии. Такой способ плавки позволяет исключить взаимодействие расплавляемой металла с футеровкой, получать любую заданную температуру жидкого металла, перемешивать этот объем жидкого металла, плавно спускать его внутри индуктора и регулировать выпуск металла в изложницу или кристаллизировать его во взвешенном состоянии.

Возможные конструкции индуктора, форма жидкого металла и конфигурация магнитного поля представлены на (рисунке 8).

В таком индукторе устойчивость взвешенного состояния жидкого металла обеспечивается в пределах объема 1,5—3,4 дм3.

3.2 Особенности тепловой работы

Технологическое применение установок для плавки во взвешенном состоянии при физико-химических исследованиях металлов часто связано с достижением заданной установившейся температуры Туст: при расплавлении Туст > Тпл, при кристаллизации металла во взвешенном состоянии Туст < Тпл. Любое значение Туст соответствует тепловому равновесию металла, когда энергия теплогенерации в результате индукционного нагрева полностью расходуется на испарение металла и на тепловые потери излучением (в вакууме) или конвекцией (в инертных газах). Однако параметры электромагнитного поля, необходимые для удержания металла во взвешенном состоянии, могут создавать теплогенерацию, не соответствующую тепловому равновесию. В частности, в диапазоне частот 70—440 кГц электромагнитное поле, удерживающее каплю, создает теплогенерацию для металлов:

1) Al, Cu, Ni, Co, Fe излишнюю, т.е. Туст > Тпл и кристаллизацию невозможно осуществить без интенсификации теплоот- вода. Металлы Fe, Ni, Co при удерживающей частоте 70 кГц кристаллизуют при обдувке капли гелием. В некоторых случаях теплогенерацию ослабляют уменьшением массы (объема) капли, если это не снижает стабильности взвешенного состояния;

2). Ti, Zr, Nb, Mo достаточную и ее можно регулировать изменением частоты поля. Металлы Ti и Zr плавят и кристаллизуют в вакууме при частоте 70 кГц, Nb и Мо — при частоте 440 кГц;

3). Та и W недостаточную, т. е. Густ < Тпл и для плавления необходимы дополнительные источники теплогенерации (в вакууме электронный луч или световой луч оптического кванто­вого генератора, в инертных газах — плазменная струя плазматрона косвенного действия).

Общий к. п. д. индукционных установок для плавки во взвешенном состоянии составляет 0,015—0,02.


Заключение

Технико-экономические показатели

Индукционные вакуумные печи по сравнению с открытыми тигельными печами имеют более низкие значения к. п. д. ηэ и ηт. Общий к. п. д. η0 составляет 0,2—0,4, а в печах с «холодным» тиглем 0,05—0,15, что вызывает повышенный удельный расход электроэнергии. Например, при выплавке стали в печах типа ИСВ Wy ≈ 2÷3 кВт ∙ ч/кг.

Строительство индукционных вакуумных печей связано с большими дополнительными капитальными затратами, что в сочетании с высокими расходами по переделу делает вакуумную индукционную плавку достаточно дорогостоящей, целесообразной только для получения металлов и сплавов особо высокого качества.


Список использованных источников

1 Кривандин В.А. Металлургическая теплотехника – 2 том / В.А. Кривандин; профессор, доктор техн. наук. – Москва: Металлургия, 1986 г. – 590 с.

2 Кривандин В.А. Теория, конструкции и расчеты металлургических печей – 1 том / Ю. П. Филимонов, В.А. Кривандин; профессор, доктор техн. наук. – Москва: Металлургия, 1986 г. – 477 с.


Информация о работе «Конструкция и методика расчёта индукционных вакуумных печей»
Раздел: Промышленность, производство
Количество знаков с пробелами: 29130
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
138399
23
10

... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...

Скачать
142912
21
0

... году по сравнению с 2002 годом. Комплекс мер, необходимых для улучшения ситуации в этой сфере перечислен в параграфе 3.2. 3.2 Разработка плана маркетинговой деятельности железнодорожного предприятия на 2004 год План маркетинговой деятельности предприятия на 2004 год разобьем на две части: маркетинговый план по основной деятельности предприятия (обеспечение перевозок, ремонт локомотивов) и ...

Скачать
277297
34
29

... : 1.   Электрофасоннолитейный цех (ЭФЛЦ) 2.   Сортопрокатный цех (СГЩ) Рисунок 3.1. Производственная структура ОАО ММЗ «Серп и молот» 3   Листопрокатный цех (ЛПЦ) 4   Сталепроволочный цех (СтПЦ) 5   Калибровочный цех 6   Цех холодной прокатки нержавеющей ленты (ЦХПНЛ) Структурой завода предусмотрены следующие вспомогательные службы, оказывающие услуги для нужд основного производства и ...

Скачать
148824
1
0

... предложений, поступающих от населения и различных местных сообществ. Люди должны сознавать, что разработка стратегии развития муниципального образования — их общее дело и они — его участники. 2. Анализ социально-экономического прогнозирования развития МО «Город Каменск-Уральский» В 2006-2008 ГГ. 2.1 Характеристика МО «Город Каменск-Уральский» Географически Каменск-Уральский расположен на ...

0 комментариев


Наверх