1.3 Проверяем несущую способность основания на равные подошвы фундамента

При углублении фундамента в пески и супески нормативная нагрузка от веса опоры и фундамента на равные подошвы следует определять с учетом вихревого действия воды.

 ,

где - нормативный вес опоры;

- объем плиты фундамента;

 - объем воды, вытесненной частью тела сопротивления к УМВ и фундаментом;

 - удельный вес воды=10;

- удельный вес бетона=24.

Расчет усилий от действующих нагрузок приводим в виде табл. 5-6.


Таблица №4

Усилие в разрезе по подошве фундамента

Силы, которые действуют в разрезе до обрізу фундамента Силы, кН Плечо относитель-но оси, м Момент относитель-но оси, кНм
Вертикальные Горизонтальные
Нормативные

Коэффициент, gf

Расчетные Нормативные

Коэффициент, gf

Расчетные X Y

Mx

My

Вес:

Опоры и фундамента Р

6963 1,1 7659

Пролетного строения и проезжей части 2*Р1

13000 1,2 15600

Нагрузка:

Временное АК на одному пролете Р2

Временное АК на двох пролетах 2*Р2

5500

11000

1,2

1,2

6600

13200

0,75 4950

Сила торможения Fт

550 1,2 660 9,3 6138

Давление льда:

На уровне УВВ Fл,1

На уровне УМВ Fл,2

44

661

1,2

1,2

293

793

7,5

3,5

2197

2775

Таблица №5

Сумма загружения в разрезе по подошве фундамента

Номер суммы Силы, которые действуют в разрезе по срезу фундамента Коэффициент суммы h Силы, кН Моменты, кНм Ексцентриситет, м Относительные ексцентриситеты
Вертикальные Горизонталь-ные

Мx

My

Ec,x=Mx/N

Ec,y=My/N

1

Вес:

Опоры Роп

Пролета

строений 2*Р1

1

1

7659

15600

Нагрузка:

Постоянная

23259

Временная АК на одном пролете Р2

Итого

1

6600

29859

4950

4950

0,165 0,183
2

Нагрузка:

Постоянная

Временная АК на двух пролетах 2*Р2

Итого

1

1

23259

13200

36459

3

Нагрузка:

Постоян-ная

Временная АК на одном пролете Р2

Сила торможе-ния Fт

Итого

1

0,8

0,8

23259

5280

28539

528

528

3960

4910

8870

0,310 0,344
4

Нагрузка:

Постоянная

Временная АК на двух пролетах 2*Р2

Сила торможения Fт

Итого

1

0,8

0,8

23259

10560

33819

528

528

4910

4910

0,145 0,161
5

Нагрузка:

Постоянная

Временная АК на двух пролетах 2*Р2

Давление льда на УМВ Fл,2

Итого

1

0,8

0,7

23259

10560

33819

555

555

1942

1942

0,057 0,03
6

Нагрузка:

Постоянная

Временная АК на двух пролетах 2*Р2

Давление льда на УВВ Fл,1

Итого

1

0,8

0,7

23259

10560

33819

205

205

1537

1537

0,045 0,023

Анализ граф 8 и 9 табл. 6 показывает, что относительные эксцентриситеты от постоянного и временного нагрузок не превышают единицы (1, п. 7.7(, ведь расчет крена фундамента можно не проводить. Таким образом, обеспечивается выполнение норм (1, п. 1.46), по проверке горизонтального смещения верха сопротивления.

Для определения несущей способности основания под подошвой фундамента мелкого заложения необходимо рассчитать:

а) среднее давление подошвы фундамента на основание, кПа

 ,

где  - расчетное сопротивление основания [1, приложение 24];

 - сила, нормальная к подошве фундамента, кН;

 - площадь подошвы фундамента, м2;

 - коэффициент надежности по назначению сооружения, которое равняется 1,4;

б) максимальное давление подошвы фундамента на основу, кПа

где  - момент сил относительно оси Х ли В, которые проходят через центр веса подошвы фундамента, кНм;

 - эксцентриситет приложения силы, , г;

- момент сопротивления площади фундамента относительно осей Х и В;

 - коэффициент условий работы, которая равняется 1 или 1,2 в зависимости от действующей временной погрузки [1, п. 7,8].

Проводим проверку несущей способности основания, используя выше приведенные условия. Расчеты сводим к табл. 6.


Таблица №6

Проверка прочности грунтового основания

Номер сум-мы

кПА

1 29859 61,56 485 0,183 1,183 574 396 0
0,817
2 36459 61,56 592 - 1 592 592 0
1
3 28539 61,56 464 0,344 1,344 624 304 0
0,656
4 33819 61,56 549 0,161 1,161 637 461 0
0,839
5 33819 61,56 549 0,03 1,03 565 533 0
0,97
6 33819 61,56 549 0,023 1,023 562 536 0
0,977

Расчетное сопротивление независимо от типа грунтов основания определяем по выражению [1, приложение 24]:

где  - условное сопротивление грунта, принимаем за [1, приложение 24];

 - коэффициенты, принимаем за [1, табл. 3, приложения 24];

 - ширина (меньшая сторона или диаметр) подошвы фундамента, г

 - глубина закладки фундамента, г;

- среднее расчетное значение удельного веса грунта, расположенного выше подошвы фундамента, вычисленное без учета взвешивающего действия воды.

Так как R0=0 то R=0.

Так как верхний пласт грунта - рыхлый песок, для которого условное сопротивление равняется 0, то это означает, что он не может нести никакой погрузки. То есть фундамент мелкого заложения не подходит.

Надо изменить размеры фундамента или его глубину; предусмотреть искусственное закрепление грунтов; запроектировать фундамент глубокого заложения.


2. ПРОЕКТИРОВАНИЕ ФУНДАМЕНТА ГЛУБОКОГО ЗАЛОЖЕНИЯ

2.1 Выбор типа и материала свай

Из большого количества видов свай в фундаментах опор мостов наиболее часто применяют забивные железобетонные сваи и сваи – оболочки с ненаружною продольной арматурой, а также буровые сваи разных типов с высоким или низким свайным раствором.

Все типы мостовых свай отличаются от свай промышленного и гражданского строительства более мощным армированием. Забивные железобетонные сваи и сваи-оболочки для мостового строительства в зависимости от типа армирования могут быть не нетрещиностойкими, трещиностойкими, выносливыми.

В нашем случае разрез сваи равняется 0.6 см. Такие сваи углубляют в грунт с помощью молота, вибропогружателя, ветровдавлюющих и вдавлюющих устройств.

2.2 Размеры низкого свайного ростверка и нагрузка на него

Предшествующие размеры низкого ростверка и глубину закладки ее подошвы разрешается принимать как для фундамента мелкого закладывания.

Расчетные погрузки в разных соединениях, действующих на равные подошвы ростверка, также разрешается принимать как для фундамента мелкого заложения на равные подошвы.


Информация о работе «Фундаменты мелкого заложения и свайные фундаменты»
Раздел: Строительство
Количество знаков с пробелами: 29712
Количество таблиц: 9
Количество изображений: 0

Похожие работы

Скачать
33742
8
11

... физико-механических характеристик грунтов площадки. Таблица 2 , кН/м3 s, кН/м3 C, кПа j E, Мпа Чернозем 16,6 - - - - Песок мелкозернистый 19,3 26,5 2 32 28 Супесь пылеватая 15 26,6 7 17 9,52 Глина четвертичная 19,8 27,4 61 19,5 22,5 I. Проектирование фундамента мелкого заложения на естественном основании   1.  Выбор глубины заложения фундамента ...

Скачать
32470
5
2

... Сила воздействия от временной вертикальной подвижной нагрузки Ртр кН 6075 Горизонтальная сила Т кН 750 Вес опоры моста Ро кН 373.5 2. Проектирование фундамента мелкого заложения на естественном основании   2.1 Определение глубины заложения подошвы фундамента. выбор отметки обреза фундамента   2.1.1 Определение глубины заложения подошвы фундамента Нормативная ...

Скачать
18631
4
10

... 14,0 Горизонт подземных вод от поверхности земли , м 1,5 В скобках указана плотность грунта во взвешанном состоянии. Мощность пласта в колонне изм-ся от кровли до его подошвы. 3.2. Расчет и конструирование свайных фундаментов Прежде всего необходимо выбрать тип сваи, назначить ее длину и размеры поперечного сечения. Длину сваи определяют как сумму L=L1+L2+L3. L1 – глубина заделки ...

Скачать
41677
19
26

... , где отсутствует промерзание, то проверку устойчивости фундаментов на воздействие касательных сил морозного пучения грунта можно не производить. 4. Проектирование свайных ленточных и кустовых фундаментов 4.1. Определение расчетных нагрузок Расчет свайных фундаментов и их оснований производят по предельным состояниям двух групп: 1) по первой группе – по прочности конструкций свай, ...

0 комментариев


Наверх