2.9 Определение оседания свайного фундамента

 

Оседание свайного фундамента надо определить методом послойного суммирования по формуле

 - безразмерный коэффициент равняется 0.8

Gzp,I- среднее значение дополнительного нормального напряжения в первом пласте грунта, которое равняется наполсуммы значений нагрузок на верхней и нижней границе пласта по вертикали, hi - мощность и –ого пласта

Еi - модуль упругости пласта

n – количество рдел на которые разбитая сжимаемая толщина основания

Значение дополнительного давления на равные основания фундамента из свай надо определить как для условно массивного фундамента за формулой

Р- среднее давление на равные подошвы фундамента из свай, которые определяются как для условно массивного фундамента

Gzg,0- бытовое давление грунта на равные подошвы фундамента

Среднее давление на равные подошвы условно массивного фундамента определяется по формуле

NII,c- нормальная составная нагрузка, действующего на равные подошве фундамента с учетом веса грунта и свай

АII,c- площадь подошвы условного фундамента

Нормальная нагрузка от веса свай

Gгр=17421,42

От внешней погрузки Nнр= 6963+13000+11000=30963 кН

Суммарная нагрузка NII,c=30963+3163,5+17421,42=51547,92 кН

Размеры подошвы условного фундамента

вII,c=3,8+2 · 14,8 tg33,64/4=8,18

аII,c=9,6 +2·14,8 tg33,64/4=13,98

АII,c=

 расчетное значение угла внутреннего трения при расчетах за второй группой предельных состояний. Среднее давление

 

Таблица 8

Расчет бытовых давлений.

Отметка Грунт

gSB или g, кН/м3

Мощность слоя h, м Давление Полное давление, кПа
от веса слоя от суммарного веса
грунта води
52.0 Уровень води УМВ 10
51,0 Покрытие песку средн. крупности, ср.плонт. 9,32
41 Подошва песка среднего, покрытие песка среднего 9,32 10 93,2 93,2 93,2
33,7 Подошва фундамента 9,82 7,3 71,69 164,89
28,8 Песок средн.крупн.плотн. 9,82 4,9 48,12 213.01
23,9 –––“–––– 9,82 4,9 48,12 261.13
19,1 –––“–––– 9,82 4,9 48,12 309.25
14,3 –––“–––– 9,82 4,9 48,12 357.37
9,4 –––“–––– 9,82 4,9 48,12 405.49

Дополнительное давление под подошвой условного фундамента

Для точек расположенных на границе текучести  zр=

 коэффициент расстояния который определяется по СНиПу нижнюю границу сжатой зоны рекомендуется определять путем сравнения дополнительного давления с 0.2 Gzg

Таблица 9

Расчет дополнительного давления

Отметка Расстояние от подошвы фундамента к слою z,м

Дополнительное давление кпа

0.2 zg

33,7 0

1,71

0 1 285,86 32,98
28,8 4,9

1,71

1,2 0,709 202,67 42,60
23,9 9,8

1,71

2,4 0,363 103,77 52,23
19,1 14,7

1,71

3,6 0,201 57,46 61,85
14,3 19,6

1,71

4,8 0,124 35,45 71,47
9,4 24,5

1,71

5,6 0,094 26,87 81,1

 

Нижняя граница активной (сжатой) зоны находится между отметками 33,7 и 9,4

 


Таблица 10

Вычисление оседания

Отметка Мощность слоя Дополнительное давление

Среднее дополн давление Gzрi

Около верха слоя Около низа слоя
33,7-28,8

4,9

285,86 202,67 244,27

0,000018

0,0218
28,8-23,9

4,9

202,67 103,77 306,44 ------- 0,0273
23,9-19,1

4,9

103,77 57,46 80,62 ------- 0,0071
19,1-14,3

4,9

57,46 35,45 46,45 ------ 0,0041
14,3-9,4

4,9

35,45 26,87 31,16 ------ 0,0028

3. РАСЧЕТЫ ПО ПРОВЕДЕНИЮ РАБОТ ПО СООРУЖЕНИЮ СВАЙНОГО ФУНДАМЕНТА

 

В зависимости от грунтовых условий и глубины погружения свай надо принять наиболее рациональный способ погружения. Необходимо рассмотреть несколько целесообразных способов погружения ,учитывая при этом, что механизмы ударного действия (молоти) наиболее рациональные в глинистых грунтах, а вибропогружение рациональное в песчаных грунтах. В данном случае принимаем механизм ударного действия – молот.

Необходимую энергию удара молотая треба подбирать за величиной минимальной энергии удара за формулой

где N – расчетная нагрузка, которая передается на изгиб кН.

В зависимости от нужной величины энергии удара определяют сваебойный агрегат, характеристики которого приведены в [ ], табл. Д.1.

Принимаем трубчатый дизель – молот с воздушным охлаждением , которое имеет энергию удара молотая Eh 135,46кдж.

Принятый тип молота должен удовлетворять требованиям

где m1 – масса молотая, т

m2 – масса сваи с наголовником, т

m3 – масса подбабка, т

Ed – расчетная энергия удара, кдж, которая определяется по указаниям БНіП.

Для молотов БНіП рекомендует определять расчетную энергию удара по формуле :

где G – вес ударной части молота, кН

H – фактическая высота падения ударной части дизель – молотая, м, которая принимается на стадии окончания забивки сваи (для трубчатых дизель – молотов – 2,8 м.

Масса молота равняется 9,55 т, масса железобетонной сваи 0,6х0,6 см длиной 8 м – 6,9 т, масса наголовника и подбабка – 0,1 т.

Проверяем возможность использования молота по величине К.

В процессе погружение сваи надо контролировать ее отказ. При забивании свай длиной до 25 м определяется остаточный отказ сваи Sa ( при условии, что Sa >0,002 м) по формуле

где η – коэффициент (кН/м2), что принимается для железобетонной сваи с наголовником 1500;

А – площадь, ограниченная внешним контуром сплошного или полного поперечного разреза ствола сваи ( независимо от наличия или отсутствия в сваи острия),м2.

Ed – расчетная энергия удара, кдж;

Fd – несущая способность сваи по грунта, кН;

m1 – масса молотая, т;

m2 – масса сваи с наголовником, т;

m3 – масса подбабка, т;

ε – коэффициент восстановления удара при забивании железобетонных свай – оболочек молотами ударного действия с использованием наголовника из деревянного вкладыша, ε2=0,2.

0,0028 м >>0.002 м.

Все условия соблюдены. Фундамент будет работать нормально.


список использованной литературы

1.  Кирилов В.С. Основания и фундаменты. – 2-е изд., перераб. и доп. – М.: Транспорт, 1980.

2.  Методические указания к выполнению раздела курсовой работы «Фундаменты мелкого заложения» по дисциплине «Мосты и сооружения на автомобильных дорогах. Основания и фундаменты» (Сост. Н.П. Лукин, Ю.Ф. Кривоносов, В.П. Кожушко, С.Н. Краснов.– Харьков: ХАДИ, 1987).

3.  Методические указания по оформлению учебно-конструкторской документации в дипломных и курсовых проектах для студентов (Сост. Н.П. Лукин, В.П. Кожушко, С.Н. Краснов и др. – Харьков: ХАДИ, 1986).

4.  Методичні вказівки до виконання розділу курсової роботи “Опускні колодязі” з дисципліни «Мосты и сооружения на автомобильных дорогах. Основания и фундаменты» (Сост. В.П. Кожушко, Н.П. Лукин, Ю.Ф. Кривоносов, С.Н. Краснов.– Харьков: ХАДИ, 1992).


Информация о работе «Фундаменты мелкого заложения и свайные фундаменты»
Раздел: Строительство
Количество знаков с пробелами: 29712
Количество таблиц: 9
Количество изображений: 0

Похожие работы

Скачать
33742
8
11

... физико-механических характеристик грунтов площадки. Таблица 2 , кН/м3 s, кН/м3 C, кПа j E, Мпа Чернозем 16,6 - - - - Песок мелкозернистый 19,3 26,5 2 32 28 Супесь пылеватая 15 26,6 7 17 9,52 Глина четвертичная 19,8 27,4 61 19,5 22,5 I. Проектирование фундамента мелкого заложения на естественном основании   1.  Выбор глубины заложения фундамента ...

Скачать
32470
5
2

... Сила воздействия от временной вертикальной подвижной нагрузки Ртр кН 6075 Горизонтальная сила Т кН 750 Вес опоры моста Ро кН 373.5 2. Проектирование фундамента мелкого заложения на естественном основании   2.1 Определение глубины заложения подошвы фундамента. выбор отметки обреза фундамента   2.1.1 Определение глубины заложения подошвы фундамента Нормативная ...

Скачать
18631
4
10

... 14,0 Горизонт подземных вод от поверхности земли , м 1,5 В скобках указана плотность грунта во взвешанном состоянии. Мощность пласта в колонне изм-ся от кровли до его подошвы. 3.2. Расчет и конструирование свайных фундаментов Прежде всего необходимо выбрать тип сваи, назначить ее длину и размеры поперечного сечения. Длину сваи определяют как сумму L=L1+L2+L3. L1 – глубина заделки ...

Скачать
41677
19
26

... , где отсутствует промерзание, то проверку устойчивости фундаментов на воздействие касательных сил морозного пучения грунта можно не производить. 4. Проектирование свайных ленточных и кустовых фундаментов 4.1. Определение расчетных нагрузок Расчет свайных фундаментов и их оснований производят по предельным состояниям двух групп: 1) по первой группе – по прочности конструкций свай, ...

0 комментариев


Наверх