1.2 Температурные зависимости концентрации в донорном полупроводнике

Донорный полупроводник характеризуется электронной проводимостью. Для него выполняется соотношение >>pn0. Положение уровня Ферми в полупроводниках n – типа при различных температурах имеет вид, представленный на рисунке 1.2.

Рисунок 1.2 – Положение уровня Ферми в полупроводниках n – типа

При этом наблюдаются следующие закономерности:

а) в области низких температур (kT<) ;

при Т=0К

б) в области средних температур (в области истощения примесей)

 (1.4)

в) в области высоких температур (в области перехода к собственной проводимости)

 (1.5)

Зная положение уровня Ферми в зависимости от температуры можно получить зависимость концентрации основных носителей от температуры.

В области низких температур

 (1.6)

В области истощения примесей . Зависимость концентрации основных носителей от температуры представлена на рисунке 1.3.

Рисунок 1.3 – График зависимости концентрации основных носителей от температуры

В области низких температур (0 – Т1) возрастание концентрации электронов связано с переходом электронов в зону проводимости с донорных уровней (происходит ионизация примесных атомов). При этом возрастание концентрации электронов характеризуется смещением уровня Ферми на рис ближе к дну зоны проводимости.

Температурный интервал Т1 – Т2 называется областью истощения примеси;

Т1 – нижней температурной границей истощения примеси, T2 – верхней температурной границей истощения примеси. В этом интервале n=Nd. Концентрация же неосновных носителей в этом интервале резко возрастает, что вытекает из закона действующих масс:

; ;  (1.7)

Процесс характеризуется смещением уровня Ферми от дна зоны проводимости к валентной зоне. В области температур Т>Т2 увеличение концентрации свободных электронов происходит за счет перехода их из валентной зоны в зону проводимости (происходит ионизация атомов основного вещества). При этом уровень Ферми располагается, как и в собственном полупроводнике, посередине запрещенной зоны. С увеличением концентрации примеси участка кривых, соответствующие примесной проводимости, смещаются вверх, что следует из формулы (1.6). Кроме того, с увеличением  уменьшается расстояние между примесными атомами, что приводит к более сильному взаимодействию электронных оболочек примесных атомов и расщеплению дискретных энергетических уровней в примесные зоны. Соответственно уменьшается энергия ионизации примесей . При достаточно большой концентрации доноров () их энергия ионизации обращается в нуль, так как образовавшаяся примесная зона перекрывается зоной проводимости. Такой полупроводник является вырожденным. Концентрация электронов в вырожденном полупроводнике n – типа постоянна во всем диапазоне примесной проводимости. Вырожденный полупроводник способен проводить электрический ток даже при очень низких температурах. Перечисленные свойства роднят вырожденные полупроводники с металлами. Поэтому их иногда называют полуметаллами.

Все рассмотренные закономерности аналогичным образом проявляются в полупроводниках р-типа.

1.3 Температурная зависимость подвижности носителей заряда

Температурную зависимость подвижности носителей μ(Т) определяют различные механизмы рассеяния:

v  на тепловых колебаниях атомов или ионов кристаллической решетки

(на фононах);

v  на примесных атомах (ионизированных и нейтральных);

v  на дефектах кристаллической структуры (дислокациях, вакансиях, границах зерен и т.п.);

v  на поверхности материала (механизм, имеющий основное значение для тонких пленок).

Основными механизмами рассеяния являются первые два.

Рассеяние носителей заряда на фононаx

При этом механизме рассеянии длина свободного пробега  обратно пропорциональна температуре ~. В соответствии с классической статистикой тепловая скорость носителей заряда определяется выражением <V>~. Обозначив через μT подвижность, обусловленную рассеянием носителей заряда на фононах, получим μT~, т.е. подвижность уменьшается с ростом температуры.

Рисунок 1.4 – Подвижность носителей заряда для собственного полупроводника

Рассеяние на тепловых колебаниях решетки играет доминирующую роль при повышенных температурах. В области пониженных температур основное значение имеет рассеяние на примесных атомах.

Рассеяние на ионизированных примесных атомах

При этом каждый ионизированный атом создает вокруг себя кулоновское поле, ослабленное по сравнению с вакуумом в  раз. Движущиеся носители заряда, попадая в область действия этого поля, испытывают кулоновское взаимодействие, вследствие чего искривляют свою первоначальную траекторию. Чем больше суммарная скорость движения носителей, тем меньше времени он пребывает вблизи заряженного атома, тем ниже эффективность рассеяния. Длина свободного пробега носителей растет с увеличением скорости их движения по закону

 (1.8)

Существенное влияние на рассеяние оказывает и концентрация ионизированных примесей Nn. Чем больше количество ионов, тем меньше расстояние между ними и тем ближе должны проходить носители относительно заряженного центра. Поэтому  обратно пропорциональна концентрации примеси

μn~ (1.9)

В случае преобладания рассеяния носителей заряда на ионизированных примесях подвижность un возрастает с ростом температуры. Если в рассеянии носителей заряда участвуют оба механизма, то результирующая подвижность может быть найдена с помощью соотношения .

В диапазоне малых температур с повышением температуры уменьшаются тепловые скорости хаотического движения носителей заряда, что приводит к увеличению времени пребывания носителя вблизи иона примеси, т.е. увеличивается длительность воздействия электрического поля иона примеси на носитель заряда. Поэтому в диапазоне малых температур с уменьшением температуры подвижность носителей также уменьшается

Рисунок 1.5 – Температурная зависимость подвижности при различных концентрациях примеси.

Температурная зависимость подвижности μ(T) выражается кривой с отчетливо выраженным максимумом, как показано на рисунке 1.5 для различных концентраций примесных атомов. С увеличением концентрации примесей максимум подвижности уменьшается и смещается в сторону более высоких температур.

При очень низких температурах, когда примеси слабо ионизированы, рассеяние носителей заряда происходит на нейтральных атомах примеси. При наличии только этого механизма рассеяния подвижность не зависит от температуры, а определяется только концентрацией примеси.

Использовались источники [1, 2].




Информация о работе «Полупроводниковые материалы»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 35637
Количество таблиц: 4
Количество изображений: 12

Похожие работы

Скачать
17264
0
0

... материалы, но наибольшее распространение получили оксиды металлов переходной группы Д. И. Менделеева [от титана (порядковый номер 22) до меди (порядковый номер 29)]. Основные требования, предъявляемые к полупроводниковым материалам таких термисторов, определяются необходимостью обеспечить широкий диапазон номинальных сопротивлений, различный температурный коэффициент сопротивления, малый разброс ...

Скачать
33306
0
0

... установкой и откачивают выделяющиеся во время расплавления материала газы и летучие соединения. Откачка длится от нескольких минут до нескольких часов в зависимости от времени плавки. Высокую степень чистоты полупроводниковых материалов получают возгонкой или сублимацией. Этот метод основан на способности некоторых твёрдых веществ переходить в парообразное состояние, минуя жидкую фазу, а затем в ...

Скачать
51680
2
2

... по миру. Если в 1900 г. в год получали около 8 тысяч тонн легкого металла, то через сто лет объем его производства достиг 24 миллионов тонн. 2.         Металлические проводниковые и полупроводниковые материалы, магнитные материалы   2.1 Классификация электротехнических материалов Электротехнические материалы представляют собой совокупность проводниковых, электроизоляционных, магнитных и ...

Скачать
38606
0
0

... для производства силовых приборов, где в качестве главного требования выступает высокая однородность распределения примесей в кристалле. Метод радиационного легирования также находит все большее применение и для легирования других полупроводниковых материалов. Так, им осуществляют легирование Ge галлием и мышьяком, InSb оловом, GaAs германием и селеном и т. д.   2. Легирование объемных ...

0 комментариев


Наверх