9. Определение числа каскадов приемника, охватываемых АРУ

В ТЗ приведен коэффициент регулирования АРУ, показывающий динамический диапазон изменения входного и выходного сигнала. Для проведения дальнейших расчетов эти динамические диапазоны надо перевести дБ по напряжению и вычислить динамический диапазон АРУ:

(52)

Число охватываемых каскадов N равняется:

(53)

где  - динамический диапазон регулировки одного каскада

 (54)

- число охватываемых каскадов АРУ

10.Составление структурной схемы проектируемого приемника

Обобщенная структурная схема приемника приведена на рис.4

Рис.4

Особенности построения структурной схемы приемника следующие:

в диапазонном приемнике необходимо показать сопряженную перестройку каскадов ВЦ, УСЧ и Г приемника;

около каждого вида устройства показать их количество N=? и тип фильтров (ОКК; ДПФ, ФСС), а также тип микросхемы;

ввести АРУ и показать какое количество усилительных каскадов охватывает система АРУ;

показать ЧАП или ФАП промежуточной частоты, уменьшающий запас по полосе приемника, если расчеты показали, что он необходим;

вместо Д, показанного на рис.4, необходимо ввести конкретный вид этого детектора:

для АТ сигналов – АД,

для ЧТ сигналов – ЧД ( перед «обычным» ЧД необходим ограничитель),

для сигналов с ОМ – СД (синхронный детектор). Обычно СД – это ФД, который формирует выходной сигнал с учетом не только разности фаз входных колебаний, но и их амплитуд. Для работы любого ФД необходимо опорное колебание. Для ОМ колебаний с остатком несущей опорное колебание выделяется в ФОН (фильтр остатка несущей) и поддерживается системой ФАП (рис.5). Для ОМ колебаний с полностью подавленной несущей опорное колебание формируется в высокостабильном генераторе (рис.6). Как следует из рисунков, перед СД ставится ФБП (фильтр боковой полосы), выделяющий спектр полезного сигнала, содержащийся в боковой полосе.

Рис. 5

Рис.6


Приложение 1

Параметры биполярных транзисторов

Тип транзистора

 (МГц)

 (Ом)

 (пФ)

 (пС)

Шт (дБ)

  (Ом) (Ом)

КТ 342 В 300 200 400 4 700 7 5 50
КТ 306 А 500 30 30 5 500 15 30 100
КТ 306 Б 650 30 60 5 500 15 30 100
КТ 3126 А 500 7 100 2,5 15 8 5 6
КТ 3127 А 600 6 150 1 10 5 5 10
КТ 316 А 600 17 60 3 50 10 15 16,7
КТ 316 Б,В 800 17 120 3 50 10 15 16,7
КТ 316 Г 600 17 100 3 150 10 15 50
КТ 316 Д 800 17 300 3 150 10 15 50
КТ 3128 А 800 7 150 1 5 5 6 5
КТ 397 А 800 25 300 1,3 40 6 20 30,8
КТ 3109 А 800 8 15 1 10 6 7 10
ГТ 311 А 770 8 70 1,8 50 8 8 27,8
ГТ 311 Б 1500 8 80 1,5 100 5,1 8 66,7
ГТ 311 Г 1500 8 60 1,5 75 5,1 8 50
ГТ 311 Д 1500 7 110 1,5 75 5,1 8 50
ГТ 329 А 1200 22 100 2 15 4 10 7,5
Т 341 А 1950 60 60 1 10 4,5 30 10
КТ 382 А 2250 3 330 2 6 3 3 3
КТ 382 Б 2250 3 330 0,7 5,5 4,5 3 2,8
КТ 372 А 2400 20 10 1 9 3,5 8 9
КТ 372 Б 3000 20 10 1 9 3,5 8 9
КТ 371 А 3600 10 200 1,2 10 5 8 8,3
Т 362 4800 5 200 1 10 4 8 10
ГТ 362 Б 4800 5 200 0,5 30 4 8 6
КТ 391 А 7000 8 150 0,7 3,7 4,5 7 5,3
КТ 391 Б 7000 8 150 1 3,7 4,5 7 5,3
КТ 368 А 7000 6 300 1,7 15 3,3 5 2,8
КТ 368 Б 7000 6 300 1,7 15 2,8 5 2,8
КТ 3115 А-2 7500 9 20 0,6 9 5 7 15
КТ 3124 А-2 8000 6 200 0,6 2,5 5 5 4,2
КТ 610 А 10000 12 300 4,1 55 6 10 13,4
КТ 610 Б 7000 12 300 4,1 22 6 5,4

Приложение 2

Параметры транзисторов на частотах ниже 500 МГц.

При включении транзисторов в усилительный каскад по схеме с общим эмиттером параметры транзистора приведены в таблице 1, где:

- прямая проводимость (крутизна) транзистора,

 - обратная проводимость транзистора,

 - выходная проводимость транзистора,

 - входная проводимость транзистора.

Таблица 1

Параметры транзистора Расчетные формулы

 

 

 

 

 

 

 

 

где

,

При включении транзисторов в усилительный каскад по каскадной схеме (ОЭ-ОБ) параметры транзисторов приведены в таблице 2.

Таблица 2

Параметры транзистора в схеме с ОЭ Параметры транзистора в схеме с ОЭ ОБ


Приложение 3

Таблица отношений напряжений и мощностей

N (дБ)

N (дБ)

N (дБ)

0 1,0 1,0 2,1 1,27 1,62 7,0 2,2 5,02
0,1 1,012 1,024 2,2 1,29 1,66 8,0 2,5 6,31
0,2 1,024 1,048 2,3 1,31 1,7 9,0 2,8 8,0
0,3 1,035 1,07 2,4 1,32 1,74 10,0 3,2 10,0
0,4 1,047 1,09 2,5 1,34 1,8 11,0 3,58 13,0
0,5 1,06 1,12 2,6 1,35 1,82 12,0 4,0 16,0
0,6 1,07 1,14 2,7 1,365 1,86 13,0 4,5 20,0
0,7 1,085 1,17 2,8 1,38 1,9 14,0 5,02 25,1
0,8 1,097 1,2 2,9 1,4 1,95 15,0 5,67 31,0
0,9 1,11 1,23 3,0 1,42 2,0 16,0 6,31 40,0
1,0 1,12 1,26 3,1 1,437 2,048 17,0 7,1 51,0
1,1 1,135 1,29 3,2 1,45 2,096 18,0 8,0 64,0
1,2 1,148 1,3 3,3 1,47 2,14 19,0 8,96 80,0
1,3 1,161 1,3 3,4 1,486 2,18 20,0 10 100
1,4 1,17 1,3 3,5 1,5 2,24 30,0 32

1,5 1,19 1,4 3,6 1,52 2,28 40,0 100

1,6 1,2 1,4 3,7 1,54 2,34 50,0 320

1,7 1,22 1,48 3,8 1,557 2,4 60,0

1,8 1,23 1,52 3,9 1,57 2,46 70,0

1,9 1,245 1,55 4,0 1,6 2,5 80,0

2,0 1,26 1,6 5,0 1,8 3,2 90,0

6,0 2,0 4,0 100.0


Приложение 4

Параметры и схемы включения микросхем серии К 226, предназначенные для усиления низкой частоты

Серии МС

(кГц)

К 226 УН1А,Б,С 250…350 0,2…100 +12,-6

К 226 УН2А,Б,С 25…35 0,02…100 +12,-6

К 226 УН3А,Б,С 270…330 0,02…100 +6,-9

К 226 УН4А,Б,С 9…11 0,02…100 +6,-9

К 226 УН5А,Б,С 90…100 0,02…100 +12,-6

Входные емкости вышеперечисленных микросхем не превышают 20пФ.


Информация о работе «Приемники непрерывных сигналов»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 15437
Количество таблиц: 11
Количество изображений: 9

Похожие работы

Скачать
25399
0
12

... входом и выходом. Такой факт позволяет использовать дифференциальную схему на высоких частотах, не применяя схему нейтрализации этой паразитной связи. Данная микросхема предназначена для использования в приемниках амплитудно-модулированных сигналов. Она может работать в диапазоне частот до 30 МГц, имея при этом усиление, позволяющие принимать сигналы с отношением сигнал–шум на выходе 20 dВ, при ...

Скачать
42211
5
6

... модуляцией, можно сделать вывод, что помехоустойчивость приемника, использующего в качестве информационного параметра фазу, почти приближена к вероятности ошибки приемника Котельникова. 3. Оптимальная фильтрация.   Отметим, что оптимальный приемник, является корреляционным, сигнал на его выходе представляет собой функцию корреляции принимаемого и ожидаемого сигналов, благодаря чему ...

Скачать
23341
0
0

... среди других возможных значений. Подобная процедура принятия решения называется правилом максимального правдоподобия. Применим изложенный подход к решению задачи оптимального приема сигналов. Суть процедуры оптимального приема. Установлено, что между колебаниями и векторами можно установить взаимно-однозначное соответствие. Поэтому вместо колебаний можно рассматривать соответствующие векторы. ...

Скачать
17479
0
0

... больше не менее, чем в 2 раза передаваемой частоты входного сигнала. Такое представление сигала во времени называется дискретизацией. Информация о мгновенном значении входного непрерывного сигнала может быть передана в сторону приемника непосредственно в форме отсчетов – амплитудно-модулированных импульсов, взятых в определенные временные моменты, причем длительность импульсов, как ...

0 комментариев


Наверх