2 ФОТОТРАНЗИСТОР
2.1 Принцип работы
Работа различных полупроводниковых приемников излучения (фоторезисторы, фотодиоды, фототранзисторы, фототиристоры) основана на использовании внутреннего фотоэффекта, который состоит в том, что под действием излучения в полупроводниках происходит генерация пар носителей заряда — электронов и дырок. Эти дополнительные носители увеличивают электрическую проводимость. Такая добавочная проводимость, обусловленная действием фотонов, получила название фотопроводимости. У металлов явление фотопроводимости практически отсутствует, так как у них концентрация электронов проводимости огромна (примерно 1022 см-3) и не может заметно увеличиться под действием излучения. В некоторых приборах за счет фотогенерации электронов и дырок возникает ЭДС, которую принято называть фото-ЭДС, и тогда эти приборы работают как источники тока. А в результате рекомбинации электронов и дырок в полупроводниках образуются фотоны, и при некоторых условиях полупроводниковые приборы могут работать в качестве источников излучения [5].
Фототранзистор - фоточувствительный полупроводниковый приемник излучения, по структуре подобный транзистору и обеспечивающий внутреннее усиление сигнала. Его можно представить состоящим из фотодиода и транзистора. Фотодиодом является освещаемая часть перехода база-коллектор, транзистором - часть структуры, расположенная непосредственно под эмиттером. Так как фотодиод и коллекторный переход транзистора конструктивно объединены, то фототок суммируется с коллекторным током. Напряжение питания подводят так, чтобы коллекторный переход был закрыт, а эмиттерный - открыт. База может быть отключенной.
В отличие от биполярного транзистора, у фототранзистора отсутствует электрический контакт к базе, а управление током базы осуществляется путем изменения ее освещенности. По этой причине конструктивно фототранзистор имеет только два вывода — эмиттер и коллектор.
Рисунок 2.1 - а) Схема фототранзистора со структурой p-n-p;
б) зонная диаграмма фототранзистора в активном режиме работы
На рис. 2.1 показаны схема включения фототранзистора и зонная диаграмма в активном режиме работы.
При попадании светового потока на n-область базы в ней генерируются неравновесные электроны и дырки. Дырки будут являться неосновными носителями, увеличение их концентрации приведет к росту дрейфовой компоненты тока из базы в коллектор. Величина первичного «затравочного» фототока будет выражаться такими же соотношениями, как и фототок диода на основе p-n-перехода. Отличие только в том, что неравновесные носители, участвующие в фототоке в фототранзисторе, собираются с области базы, ширина которой W меньше, чем диффузионная длина Lp. Поэтому плотность первичного «затравочного» фототока будет [7]:
(2.1)
Вследствие того что неравновесные дырки уходят из базы в коллектор, база заряжена отрицательно относительно эмиттера, что эквивалентно прямому смещению эмиттерного перехода фототранзистора. При прямом смещении эмиттерного p-n-перехода появляется инжекционная компонента тока из эмиттера в базу. При коэффициенте передачи эмиттерного тока α в базе рекомбинируют (1–α) инжектированных носителей или в β раз меньше, чем число инжектированных носителей. В условиях стационарного тока число прорекомбинировавших носителей в базе должно быть равно их числу, ушедшему с первоначальным фототоком. Поэтому инжекционный ток должен быть в β раз больше, чем первичный фототок. Ток коллектора IК будет состоять из трех компонент: первичного фототока Iф, инжекционного βIф и теплового IК0 тока [7].
IК= Iф+β Iф=(β+1) Iф+ IК0 (2.2)
Используя выражение для коэффициента усиления β базового тока через конструктивно-технологические параметры биполярного транзистора, получаем:
(2.3)
Величина первичного фототока IФ выражается через параметры светового потока и характеристики полупроводникового материала стандартным образом:
(2.4)
При освещении базы в ней возникают электронно-дырочные пары. Так же как и в фотодиоде, пары, достигшие в результате диффузии коллекторного перехода, разделяются полем перехода, неосновные носители из базы движутся в коллектор, при этом его ток увеличивается. Основные носители остаются в базе, понижая ее потенциал относительно эмиттера. При этом на эмиттерном переходе создается дополнительное прямое напряжение, вызывающее дополнительную инжекцию из эмиттера в базу и соответствующее увеличение тока коллектора.
Рисунок 2.2 - Энергетическая диаграмма фототранзистора (а) и вольтамперные характеристики фототранзистора при разных уровнях освещения (б).
2.1.1 Работа фототранзистора с общим эмиттеромРассмотрим, например, работу фототранзистора в схеме с общим эмиттером при отключенной базе. Фототок коллекторного перехода суммируется с обратным током коллектора, поэтому в формуле для тока транзистора вместо JК0 следует поставить [17]
JК0 + JФ/J = (JК0 + JФ)/(1-α).
При JК0>>JФ J =JФ/(1-α) ≈ βJФ, т.е. фототок фототранзистора усиливается в β раз по сравнению током фотодиода. Соответственно в β раз увеличивается и чувствительность. Ток может быть усилен в 1000 раз, поэтому чувствительность фототранзистора во много раз больше чувствительности фотодиода. Однако поскольку произведение коэффициента усиления на полосу частот величина постоянная, то предельная частота уменьшается в β раз.
Рисунок 2.3 - Эквивалентная схема фототранзистора.
Наличие диффузии носителей обуславливает значительную инерционность прибора τ = 10–5-10–6 с. При сужении базы время диффузии уменьшается, но уменьшается и чувствительность. Для германиевых фототранзисторов SI= 0,2-0,5 А/лм, Vраб= 3 В, Iтемн= 300 мкА, τ = 0,2 мс. В корпусе прибора предусмотрено прозрачное окно, через которое световой поток попадает обычно на базовую область фототранзистора. Площадь фоточувствительной площадки составляет 1-3 мм2.
2.2 Параметры фототранзисторовОсновные параметры фототранзисторов представлены в таблице 2.1
Таблица 2.1 - Параметры фототранзисторов
Условное обозначение | Единица измерения | Определение |
Up | В | Рабочее напряжение постоянное напряжение, приложенное к фототранзистору, при котором обеспечиваются номинальные параметры при длительной ею работе |
∆λ | мкм | Область спектральной чувствительности фототранзистора интервал длины волны спектральной характеристики фототранзистора, в котором его чувствительность равна 10% и более от своего максимального значения |
Условное обозначение | Единица измерения | Определение |
Рmax | мВт | Максимально допустимая рассеиваемая мощность — максимальная электрическая мощность, рассеиваемая фототранзистором, при которой отклонение ею параметров от номинальных значений не превышает указанных пределов при длительной работе |
Iт | мкА | Тем новой ток — ток. протекающий через фототранзистор при заданном напряжении на нем в отсутствие потока излучения |
Iф | мА | Фототок (ток фотосигнала) ток, протекающий через фототранзистор при указанном напряжении на нем, обусловленный действием потока излучения |
S1инт | А/лм или А/лк | Токовая интегральная чувствительность - отношение фототока к значению мощности (или освещенности) потока излучения с. заданным спектральным составом, вызвавшего появление фототока |
Фп | Вт | Порог чувствительности — среднеквадратическое значение первой гармоники действующего на фоточувсгвительныи элемент фототранзистора модулированного потока излучения заданного спектрального распределения, при котором среднеквадратическое значение первой гармоники фототока равно среднеквадратическому течению шумового тока в заданной полосе на частоте модуляции потока излучения |
Условное обозначение | Единица измерения | Определение |
Ку.ф | отн.ед. | Коэффициент усилении фототока — отношение фототока коллектора при отключенной базе к фототоку освещаемого перехода, измеренного в фотодиодном режиме |
2β | град | Плоский угол зрения фототранзистора угол в нормальной к фоточувствительному элементу плоскости между крайними направлениями падения параллельного пучка излучения, при которых ток фотосигнала уменьшается до заданного уровня |
τср | мкс | Постоянная времени до садy фотототока - время в течение которого фототок уменьшается до значения, равного 37 % от максимального, при затемнении фоточувствительного элемента фототранзистора |
Существует две разновидности конструкций фототранзисторов: поперечная и продольная. Продольные транзисторы имеют более простую конструкцию и технологию, удобны для включения в интегральные схемы, но уступают по своим функциональным параметрам [15].
Рисунок 2.4 - Структура поперечного (а) и продольного (б) фототранзисторов.
Достоинства фототранзисторов: наличие механизма внутреннего усиления, т.е. высокая фоточувствительность, схемотехническая гибкость, связанная с наличием третьего электрода.
Основные недостатки: ограниченное быстродействие и температурная зависимость параметров.
2.4 МДП-фототранзисторыМДП (металл-диэлектрик-проводник) фототранзистор представляет собой полевой транзистор с изолированным затвором, в котором поглощаемый в подзатворной области световой поток приводит к изменению проводимости канала между истоком и стоком. Вызванное светом увеличение тока приводит к изменению порогового напряжения и крутизны передаточной характеристики. Электрод затвора должен быть изготовлен из прозрачного или полупрозрачного материала. МДП-фототранзистор, таким образом, является аналогом фоторезистора, но может быть использован в любом режиме подзатворного канала: обогащении, обеднении, инверсии.
Рисунок 2.5 - Структура МДП-фототранзистора.
При использовании в качестве фотоприемников МДП-транзисторов их целесообразно применять в сочетании с фотодиодом на основе p-n перехода. Технологически фотодиод и МДП-транзистор изготавливаются на одной пластине полупроводника и фотодиод подключается к истоку и затвору. Так как ток через затвор не протекает, то фотодиод работает в режиме генерации фотоЭДС [11]. При одновременном освещении p-n перехода и МДП-транзистора меняется как напряжение отсечки, так и фотонапряжение p-n–перехода. Фото ЭДС p-n-перехода изменяет потенциал затвора, поэтому изменяется ток в цепи исток-сток.
Рисунок 2.6 - Структура (а) и эквивалентная схема (б) МДП-транзистора с фотодиодом на основе p-n перехода.
МДП-фототранзисторы являются удобными фоточувствительными элементами для создания многоэлементных фотоприемников [2].
2.5 ГетерофототранзисторыГетерофототранзисторы (рис. 3.4) основаны на принципе действия обычного биполярного фототранзистора, но в них используются и все достоинства гетероструктур: широкозонные эмиттерное и коллекторное окна (что позволяет создавать конструкции с прямой и обратной - через толстый коллекторный слой - засветкой); тонкая фотоактивная базовая область, полностью поглощающая воздействующее излучение; идеальность гетерограниц, препятствующих просачиванию основных носителей базы в коллектор и накоплению их в нем. Все это ведет к тому, что гетерофототранзисторы могут иметь не только высокую чувствительность в любом заданном участке спектра, но и очень высокое быстродействие (в нано- и субнаносекундном диапазоне).
Однако гетерофототранзисторы используются, как правило, лишь в диодном включении (так как вывод от узкой базовой области сделать затруднительно), что лишает их схемотехнической гибкости, присущей транзисторам. По мере усовершенствования и промышленного развития эти приборы станут "соперниками" ЛФД, выгодно отличаясь от них низким питающим напряжением, отсутствием жестких требований к стабилизации режима работы и другими достоинствами, присущими транзисторам.
Рисунок 2.7 - Гетерофототранзистор
1-- n+-InP-эмиттер с кольцевым электродом;
2-- p-InGaAsP-база;
3-- n+-n-InP-коллектор (подложка).
Тонкая фотоактивная базовая область, обусловленная идеальностью гетерограниц, обеспечивает накопление основных носителей заряда в базе и отсутствие просачивания неосновных носителей в эмиттер.
Рисунок 2.8 - Структура гетерофототранзистора.
Гетерофототранзисторы имеют высокую фоточувствительность и быстродействие (10–9-10–10 с), низкое напряжение питания, возможность выбора спектральной области чувствительности [5].
Но в то же время гетерофототранзистор используется обычно в диодном включении (вывод от узкой базы сложно сделать), поэтому не полностью реализуются схемотехнические возможности фототранзистора.
2.5.1 Физические основы гетеропереходаЕсли n- и p-область перехода изготовлены из различных полупроводников, то такой переход называется гетеропереходом. Отличие от обычного перехода более тонко в том случае, когда полупроводники взаиморастворимы, а переход плавный. Переходы последнего типа иногда называют "квазигомопереходами". Таким образом, плавные переходы между n-ZnSe и p-ZnTe или между p-GaAs и n-GaР являются квазигомопереходами.
Рисунок 2.9 - Инжекцию неосновных носителей в полупроводнике
Одной из причин обращения к гетеропереходам является возможность получить высокоэффективную инжекцию неосновных носителей в узкозонный полупроводник, т.е. суперинжекция, заключающаяся в том, что концентрация инжектированных в базу носителей может на несколько порядков превысить их равновесное значение в эмиттерной области (рис.2.9). Это означает, что стремление получить g=1 в широком интервале изменения прямого тока не накладывает каких-либо ограничений на вид и концентрацию легирующей примеси в эмиттерной и базовой областях - у разработчика оптоэлектронных приборов появляется лишняя "степень свободы" [17].
Это свойство гетеропереходов легко понять из рассмотрения рис.3.6. Когда прямое смещение выравнивает валентную зону, дырки нжектируются в n-область. Инжекции же электронов из n-области в p-область препятствует барьер DE = Еg1 - Еg2 (рис. 2.10).
а) б)
Рисунок2.10 - Идеальная зонная схема для гетероперехода.
а) - в условиях равновесия; б) - при прямом смещении V
Очевидно, что в этом случае излучательная рекомбинация будет происходить в узкозонной области. Так, в гетеропереходах GaAs - GaSb полоса инжекционной люминесценции находится при энергии 0,7 эВ, что равно ширине запрещенной зоны GaSb. Оптические свойства эмиттера и базы гетероструктуры различны и могут в широких пределах изменяться независимо друг от друга. Отсюда, в частности, следует, что широкозонный эмиттер представляет собой "окно" для более длинноволнового излучения, генерируемого (или поглощаемого) узкозонной базой.
Кроме того, различие в значениях Еg ведет и к различию показателей преломления n, что порождает волноводный эффект, т.е. концентрацию оптической энергии в слое с большим n при распространении излучения вдоль слоя [8].
Рисунок 2.11 – Зоны раздела
На практике гетеропереходам присущи недостатки, связанные с границей раздела: уровень Ферми оказывается фиксированным на границе из-за поверхностных состояний. Поэтому вместо ровного хода для одной из зон обычно имеет место барьер типа Шоттки, как показано на рис. 3.8, Поскольку барьер Шоттки обладает выпрямляющим действием, его присутствие становится очевидным при рассмотрении n-n-гетеропереходов - т.е. переходов между двумя различными полупроводниками n-типа [7].
2.5.2 Расчет параметров и характеристик фототранзистора на гетеропереходахПараметры фототранзистора на гетеропереходах:
- ВАХ фототранзистора;
- Энергетические характеристики;
- Спектральные характеристики;
- Пороговый поток Фn;
- Выявляющая способность Д;
- Коэффициент усиления на фототоках ;
- Вольтовая чувствительность he13;
- Тоновая чувствительность;
- Токовая чувствительность с общим эмиттером ;
Выходные данные:
х1 (GaAs) = 4,53 eB; х1 (Ge) = 4,66 eB
φ0=0,15 eB; р0=1014см-3;
j0=10-12 A; n0=1015 см-3;
Т= 300 К; q=-1.6·1019
Диэлектрическая постоянная вычисляется по формулам:
в p-области (2.1)
в n –области (2.2)
На границах гетеропереходов при х=0 должно выполнятся условие неразрывности нормальной составляющей электрической индукции:
(2.3)
φ1(х) и φ2(х), х=0 находим
(2.4)
(2.5)
где
(2.6)
Полная контактная разница потенциалов на границе гетеропереходов равна отношению:
φ0= φ1(0) + φ1(0) (2.7)
Теперь найдем толщину объемного заряда:
= 0,6·10-7
= 0,145·10-7
Теперь рассчитаем толщину объемного заряда:
L=Ln+Lp=0,6·10-7+0,145·10-7=0,745·10-7 см.
Вольтамперная характеристика гетероперехода
(2.8)
При І0= const, I=I0 –обратное смещение.
При І0≠const, I=I0 – прямое смещение.
Исходя из полученных результатов строим график
Рисунок 2.12 – Вольтамперная характеристика фототранзистора
ВЫВОДЫ
В ходе данной курсовой работе:
- были рассмотрены общие сведения и принцип работы транзисторов;
- рассчитана линейная зависимость токов в транзисторе
- рассмотрен принцип работы фототранзистора, а также работа фототранзистора с общим эмиттером
- рассмотрены некоторые виды фототранзистора и принципы их работы
- рассчитаны некоторые параметры прибора на гетеропереходах и построена вольтамперная характеристика фототранзистора.
1. Ефимов И.Е., Козырь И.Я. Основы микроэлектроники. – 2-е изд., перераб. и доп. – М.: Высшая школа, 1983г. – 384 с.
2. Тугов Н.М., Глебов Б.А., Чарыков Н.А. Полупроводниковые приборы. – М.: Энергоатомиздат, 1990г. – 376 с.
3. Степаненко И.П. Основы микроэлектроники. – М.: Сов. радио, 1980г.
4. Полупроводниковые приборы: транзисторы. Справочник. Под ред. Н. Н. Горюнова – М.: Энергоатомиздат, 1985г. – 404 с.
5. Федотов Я. А. Основы физики полупроводниковых приборов. М., “Советское радио”, 1970г. – 392 с.
6. Жеребцов И.П. Основы электроники. – Энергоатомиздат, Ленинградское отд-ние, 1989г. – 352 с.
7. Епифанов Г.И. Физические основы микроэлектроники М.: Сов. радио, 1971 г. – 376 с.
8. Ефимов И. Е., Козырь И. Я., Горбунов Ю. И. Микроэлектроника. М.: Высшая школа, 1987г. – 326 с.
9. Носов Ю. Р. Оптоэлектроника. М.: Советское радио, 1977г.- 232 с.
10. Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы. М.: Высшая школа, 1987г. 479 c.
11. Бараночников М.. Фототранзисторы. Журнал «Радио» № 6,7,8 – 1992 г
12. Ніконова З.А., Небеснюк О.Ю. Твердотіла електроніка. Конспект лекцій для студентів напрямку «Електроніка» ЗДІА/ Запоріжжя: Видавництво ЗДІА, 2002. – 99с.
13. Твердотіла електроніка. Навчальний посібник до курсового проекту для студентів ЗДІА спеціальності «Фізична та біомедична електроніка» денної та заочної форм навчання /Укл: З.А. Ніконова, О.Ю. Небеснюк,, М.О. Літвіненко, Г.А. Слюсаревська. Запоріжжя, 2005. – 40с.
14. Зи С. Физика полупроводниковых приборов: Пер. с англ. М.: Мир, 1984.
15. Батушев В. А. Электронные приборы. – М. , “Высшая школа” 1980.
16. Ефимов И.Е., Горбунов Ю.И., Козырь И.Я. Микроэлектроника. Проектирование, виды микросхем, функциональная электроника. – М.: Высшая школа, 1987. – 416 с.
17. Федотов Я. А. Основы физики полупроводниковых приборов. М., “Советское радио”, 1970. – 392 с.
... Еще возможно комплексное решение - опрос готовности устройств (polling) по периодическим прерываниям, например, от системного таймера. Устройство, для которого обнаружена готовность - обслуживается, не готовое - пропускается до следующего прерывания. Периферийные устройства ввода информации Клавиатура является основным устройством ввода информации в ПК. Это первое из внешних устройств ...
... угла от эталонов к образцовым и рабочим угловым мерам, поверки и градуировки угломерных приборов и специальных угловых мер (шаблонов), а также для непосредственного измерения угловых изделий. По ГОСТу 2875 - 88 "Меры плоского угла призматические. Общие технические условия" предусмотрено пять типов угловых мер (рис. 4.20): меры типа 1 выполнены со срезанной вершиной угла и имеют малые (до 9о) ...
... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...
... фильтр с тремя секторами, окрашенными в цвета составляющих пространства RGB (в современных моделях к трем цветным секторам добавлен четвертый - прозрачный, что позволяет увеличить световой поток мультимедийного проектора при демонстрации изображений с преобладающим светлым фоном). Устройствово такого проектора представлено на рисунке 1.2.Рисунок 1.2 - Устройствово DLP проектора В зависимости ...
0 комментариев