3. Энергетический расчет спутниковой линии

Основная особенность спутниковых линий связи – большое затухание радиосигнала на участках линии. Так при высоте орбиты ИСЗ в 36000 км затухание радиосигнала на участке достигает 200 дБ. Кроме этого, радиосигнал претерпевает случайные изменения вследствие поглощения радиоволн в атмосфере (дождь, снег, туман), их рефракции и деполяризации, Фарадеевского вращения плоскости поляризации. На приёмные устройства воздействуют помехи в виде излучений космоса, Солнца, Земли и др. планет.

Правильный и точный учет всех особенностей спутниковой связи позволяет выполнить оптимальное проектирование системы связи, обеспечить её надежную работу в наиболее сложных условиях и в то же время исключить излишние энергетические затраты, приводящие к неоправданному усложнению наземной и бортовой аппаратуры.

В энергетическом смысле для линии «ЗС-СР-ЗС» (земная станция – спутник-ретранслятор – земная станция) оба участка напряженные и неравнозначные: первый – из-за стремления уменьшить мощность передатчика земной станции и относительно низкой чувствительности приемника ретранслятора, второй – из-за ограничений на массу, габариты и энергетику ретранслятора, т.е. ограничения на мощность бортового передатчика.

Для участка ЗС-СР мощность сигнала на входе бортового приёмника можно определить из первого уравнения передачи

, [дБ]. (3.1)

Аналогично для участка СР-ЗС

, [дБ], (3.2)


где  – потери в антенно-волноводном тракте передачи (приёма) земной станции или бортового ретранслятора;

 – коэффициент передачи по мощности антенно-волноводного тракта передачи или приёма;

 – дополнительное затухание радиосигнала на участке ЗС-СР (СР-ЗС).

Потери в антенно-волноводном тракте зависят от его конструкции и диапазона рабочих частот. Обычно при расчетах принимают , , .

3.1 Расчёт затухания радиосигнала на участках линии спутниковой связи

Полное затухание радиосигналов в линиях спутниковой связи определяется потерями в свободном пространстве  и дополнительными потерями , обусловленными особенностями функционирования систем спутниковой связи:

, [дБ]. (3.3)

Потери энергии радиоволн при распространении в свободном пространстве определяются в соответствии с выражением

, [дБ], (3.4)


где  – наклонная дальность на участках радиолинии КС, определяемая как

, (3.5)

где =6371 км – радиус Земли (при её аппроксимации сферой);

H – высота орбиты ИСЗ (для геостационарной орбиты Н = 35875 км, для высокоэллиптических орбит Н – высота апогея);

 – топоцентрический параметр, который может быть определен из выражения

 (3.6)

где,  – географическая широта подспутниковой «точки»;

 – географическая широта земной станции;

; (3.7)

 – географическая долгота ЗС;

 – географическая долгота подспутниковой «точки».

При расчете энергетических параметров сети спутниковой связи  следует выбрать максимальным для заданной зоны обслуживания. Для выполнения этого условия из исходных данных выберем географические координаты ЗС и СР таким образом, чтобы ЗС находилась на максимальном расстоянии от подспутниковой «точки» для заданной зоны обслуживания.

Имеем: , , ,

Отсюда,

Дополнительное затухание радиосигнала на участках радиолинии КС  зависит от многих факторов, проявляющихся независимо друг от друга, и может быть представлено в виде суммы:

, (3.8)

где  – затухание в атмосфере без осадков;

 – затухание в осадках;

 – затухание, учитывающее неточность наведения антенн;

 – затухание за счет деполяризации сигнала в среде распространения.

Затухание в атмосфере без осадков  определяется главным образом поглощением в тропосфере и имеет ярко выраженный частотно-зависимый характер с резонансными пиками на частотах 22 и 165 ГГц (для водяных паров) и 60 и 120 ГГц (для кислорода).

Потери энергии радиосигнала в атмосфере без осадков не зависят от времени (имеют место в течение 100% времени работы радиолинии) и определяются по графикам (рис. 3.1) в зависимости от частоты радиосигнала  Найдём на линии вверх  () и вниз  ().

Таким образом,  и . Затухание сигнала в осадках зависит от вида гидрометеоров (дождь, снег, туман), размеров зоны их выпадения, интенсивности осадков в зоне и т.д. В диапазонах частот  величина затухания радиосигнала в осадках составляет . Поэтому примем .


Рис. 3.1. Графики для определения затухания радиосигнала в атмосфере без осадков

Дополнительное затухание сигнала за счет неточного наведения антенн ЗС и СР друг от друга  обусловлено рефракцией радиоволн, что приводит к образованию угла между истинным и кажущимся направлениями ИСЗ. Угловое отклонение, вызванное рефракцией, составляет несколько десятых долей градуса и может быть скомпенсировано при автоматическом наведении антенн по максимуму сигнала. При других методах наведения с учетом погрешностей конструкции устройства наведения можно принять .

Поляризационные потери на участках линии КС складываются из потерь, вызванных несогласованностью поляризации, потерь, связанных с эффектом Фарадея, и потерь из-за деполяризации радиоволн в осадках.

Потери, вызванные несогласованностью поляризации, имеют существенное значение при использовании на ЗС и СР узконаправленных антенн и применении линейной поляризации. Использование круговой поляризации позволяет эти потери сделать пренебрежимо малыми. Потери, обусловленные эффектом Фарадея, проявляются при использовании сигналов с линейной поляризацией, зависят от частоты и пренебрежимо малы. Потери из-за деполяризации радиоволн при осадках больше характерны для сигналов с круговой поляризацией, носят статистический характер, связанный со статистикой выпадения дождей, и могут оказывать заметное влияние на энергетику систем спутниковой связи на частотах выше 12 ГГц.

При использовании на линиях КС круговой поляризации сигналов результирующие поляризационные потери принимают .

Таким образом, получаем ослабление радиосигнала на участке вниз

и на участке вверх

.

Хорошо видно, что ослабление на участке вниз меньше, чем на участке вверх на 2 дБ. Такое отличие связано с тем, что радиосигнал на более высоких частотах претерпевает большее затухание, чем на частотах ниже. Именно этим обусловлен тот факт, что для значения частоты радиосигнала на участке СР-ЗС всегда выбирается меньшее значение, чем на участке ЗС-СР. Ведь на борту ИСЗ энергетика жёстко ограничена, что сильно оказывает влияние на максимальную выходную мощность передатчика ретранслятора связи.

3.2 Расчёт энергетических параметров приёмных устройств

Приемное устройство СВЧ может характеризоваться некоторыми энергетическими параметрами: реальной чувствительностью, пороговой чувствительностью, коэффициентом шума, шумовой температурой и эффективной температурой. Все эти параметры, как известно, имеют определенную связь между собой. Три последних из них характеризуют линейную часть приемного устройства от антенны до детектора. В системах спутниковой (космической) связи наибольшее распространение получили два последних параметра.

3.3 Расчёт полной эффективной температуры приёмных устройств, пересчитанной к облучателю приёмной антенны

 

Шумовая температура  оценивает внутренние шумы линейной части приемника, пересчитанные на его вход. Она может быть выражена через коэффициент шума  следующим образом

 

, (3.9)

где  – абсолютная температура среды, в которой работает приемник (обычно ).

Чем ниже шумовая температура приемника, тем выше его чувствительность. Для идеального четырёхполюсника , поэтому .

Для приёмника ЗС коэффициент шума составляет  или , т.е. .

Т.к. основной вклад в шум приёмного устройства вносит первый каскад, т.е. МШУ, то коэффициент шума МШУ будет ненамного меньше коэффициента шума всего приёмного устройства. А таким МШУ может служить параметрический усилитель на полупроводниковых диодах ().

Для приёмника СР коэффициент шума составляет  или , т.е. .

Такие значения позволяют первый каскад усилителя такого приёмника реализовать на ЛБВ (Лампа бегущей волны).

Эффективная температура () характеризует полную мощность шумов, действующих на входе приемника, т.е. поступающих из антенно-волноводного тракта и собственных, пересчитанных на вход. Полная эффективная температура приемного устройства, пересчитанная на вход приемника

, (3.10)

то же – к облучателю приёмной антенны:

, (3.11)

где  – эквивалентная шумовая температура антенны;

 – эквивалентная шумовая температура антенно-волноводного тракта.

Эквивалентная шумовая температура антенны может быть представлена в виде составляющих [10, 13]:

, (3.12)

где  – составляющая, обусловленная приемом космического радиоизлучения, зависящая от угла места антенны;

 – составляющая, обусловленная излучением атмосферы и зависящая от угла места антенны;

 – составляющая, учитывающая излучение Земли;

 – составляющая, учитывающая собственные шумы антенны из-за наличия потерь в её элементах;

– коэффициент, учитывающий усредненный уровень боковых и задних лепестков диаграммы направленности антенны (для антенн ЗС , для антенн СР ).

Эквивалентная шумовая температура волноводного тракта, работающего при абсолютной температуре .

. (3.13)

Шумы космического происхождения определяются в основном излучениями Галактики, Солнца и Луны. При этом усреднённая температура шумов Галактики на частотах до 11 ГГц не превышает 10°К. Шумовое излучение Солнца может полностью нарушить связь при попадании в главный лепесток диаграммы направленности антенны. Однако влияние Солнца можно, свести к минимуму при конкретном расчете трассы участка. Излучение Луны оказывает ещё меньшее влияние, т. к. её шумовая температура на несколько порядков ниже шумовой температуры Солнца. Таким образом, в большинстве практических случаев составляющая  может приниматься равной нулю.

Шумовая температура атмосферы определяется излучением спокойной атмосферы и влиянием осадков, зависит от частот сигнала и угла места антенны. При известном затухании радиосигнала в атмосфере (с учётом осадков)  шумовая температура атмосферы быть определена как:

, []. (3.14)


Шумовая температура Земли при расчетах принимается равной

Составляющая  как показывает практика, зависит от угла места антенны. Приведено выражение для расчета этой составляющей с учётом .

, []. (3.15)

Собственная шумовая температура антенны обусловлена потерями анергии в облучателе. Она может быть определена по аналогии с (3.13)

Поскольку коэффициент полезного действия облучателя близок к 1, то собственной шумовой температурой антенны можно пренебречь.

Подставив все составляющие в (3.3), имеем

 и .

3.4 Расчёт коэффициента усиления антенн земной станции и ретранслятора на приём и на передачу

Усиление антенны  земной станции на передачу или на приём можно определить по диаметру зеркала (рефлектора) и длине рабочей волны на участке ЗС-СР () или на участке СР-ЗС ():

, [дБ], (3.16)

где  – коэффициент использования поверхности зеркала (КИП) (для двухзеркальных ).

Примем КИП  Из исходных данных , следовательно  и .

Для бортовой антенны обычно задается угол главного лепестка диаграммы направленности . В этом случае усиление антенны можно определить как

, [дБ]. (3.17)

Для обеспечения связи в пределах заданной зоны на ретрансляторе будем использовать антенну с ШДН . Ретранслятор с такой антенной будет освещать зону диаметром , что достаточно для освещения трассы парома. Её коэффициент усиления составит .

3.5 Расчёт реальной чувствительности приёмников

Реальная чувствительность радиоприемника  характеризуется минимальной мощностью сигнала на его входе, при которой обеспечивается заданное качество связи на интервале и в линии в целом. Поэтому расчёт реальной чувствительности приемников проводится с учётом нормирования качества связи на интервалах (участках), механизма накопления искажений в линии в условиях замираний, режимов работы станций в линии и т.д.

Реальная чувствительность приемников КС в режиме передачи цифровых сообщений методом непосредственной манипуляции несущего колебания определяется скоростью передачи сообщений, методом манипуляции несущей (АМн, ЧМн, ФМн, ОФМн), способом обработки сигнала в приемнике (когерентный, некогерентный), требованием к достоверности и т.д. Для когерентного и некогерентного приема

, [дБ], (3.18)

- шумовая полоса пропускания приемника,

 – соотношение сигнал/шум на входе решающей схемы приемника для обеспечения заданной вероятности ошибок .

В реальных условиях обычно принимается в расчёт поправка на потери при технической реализации когерентного приёма . С учётом этой поправки

, [дБ]. (3.19)

Имеем  и (Вт).

Такое различие значений реальной чувствительности приёмников на Земле и на борту ИСЗ обусловлено тем, что на земных станциях большое распространение получили параметрические МШУ с коэффициентом шума 6…7 дБ, в то время как на ретрансляторе применяются транзисторные МШУ коэффициент шума которых ~10 дБ.

3.6 Расчёт энергетических параметров передающих устройств

Расчет и обоснование энергетических параметров станций: мощности передатчика, затухания в АФТ, коэффициента усиления антенны, реальной (пороговой) чувствительности приемника или его шумовых параметров, требуемого запаса уровня СВЧ-радиосигнала на интервале является основной целью энергетического проектирования линии связи. Расчет производится на основе решения первого и второго уравнений передачи. При этом отдельные составляющие этих уравнений должны быть предварительно рассчитаны или обоснованно выбраны.

Решение уравнений передачи не может быть однозначным вследствие некоторого разброса значений параметров, входящих в уравнения. Поэтому величина рассчитываемого параметра может оказаться неприемлемой. В этом случае следует внести коррективы в значения тех или иных параметров и решать уравнение заново.

3.7 Расчёт выходных мощностей передатчиков земной станции и ретранслятора связи на ИСЗ

Мощности передатчиков ЗС и СР определяются в соответствии с первым уравнением передачи:

 (3.20)

, [дБ],

где  – мощности сигналов на входах приемников ЗС (СР)

 – эквивалентное затухание на участке вверх (вниз), которые находятся из выражения:

, [дБ],


где  – затухание волноводных (фидерных) трактов соответствующих передающих и приемных устройств участков;

 – эксплуатационный запас мощности передатчика.

Мощности передатчиков земной станции и спутника-ретранслятра:

Третья глава посвящена энергетическому расчету спутниковой линий: наклонной дальности, затухания сигнала, шумовой температуры, коэффициента усиления антенн земной станции и ретранслятора на приём и передачу, мощности передатчиков земной станции и ретранслятора связи на ИСЗ.

Опираясь на эти показатели можно выбрать приемно-передающую аппаратуру, и рассчитать параметры антенны.

4. Расчет приемо-передающей антенны спутниковой связи

4.1 Общий анализ и сравнительная характеристика антенн

В последнее десятилетие в области космической и радиорелейной связи, радиоастрономии и других областях широкое распространение получили двухзеркальные антенны (ДЗА).

Основными достоинствами анесимметричных ДЗА по сравнению с однозеркальными являются:

1.  Улучшение электрических характеристик, в частности повышение коэффициента использования поверхности раскрыва антенны, так как наличие второго зеркала облегчает оптимизацию распределения амплитуд по поверхности основного зеркала.

2.  Конструктивные удобства, в частности упрощение подводки системы фидерного питания к излучателю.

3.  Уменьшение длины волноводных трактов между приемо-передающим устройством и облучателем, например, путем размещения приемного устройства, вблизи вершины основного зеркала.

Вместе с тем ДЗА свойственны следующие недостатки:

1.  высокая степень затенения излучающего раскрыва, особенно для антенн с малым электрическим размером раскрыва, то есть характеризуемым сравнительно малым значением D/λ;

2.  высокий уровень боковых лепестков по угловым направлениям, примыкающим к направлению главного излучения;

3.  значительно более серьезные трудности в конструировании квазичастотно независимых облучателей антенны по сравнению с однозеркальной схемой;

4.  большие физические размеры облучателя;

5.  высокая стоимость.

Принцип действия ДЗА заключается в преобразовании сферического волнового фронта электромагнитной волны, излучаемой источником, в плоский волновой фронт в раскрыве антенны в результате последовательного переотражения от двух зеркал: вспомогательного и основного с соответствующими профилями.

Одним из наиболее распространенных вариантов исполнения двузеркальной антенны является антенна типа Кассегрена, содержащая параболоидное основное зеркало, облучатель и вспомогательное зеркало (контррефлектор), представляющее собой часть поверхности в виде гиперболоида вращения.

Трансформация волновых фронтов в указанной схеме такова: сферический фронт волны, излученный облучателем, после отражения от конррефлектра трансформируется вновь в сферический расходящийся фронт, виртуальный источник которого расположен на оси системы за гиперболоидным контррефлектором в точке фокуса основного рефлектора, а после второго отражения от параболоида трансформируется в плоский волновой фронт.

Рисунок 4.1 – антенна типа Кассегрена


4.2 Расчет энергетических характеристик антенны

К основным энергетическим характеристикам антенны относят коэффициент усиления и коэффициент направленного действия.

Коэффициент усиления передатчика:

Для того, чтобы выразить Gпер в разах необходимо использовать известное соотношение:

 (4.1)

Коэффициент направленного действия (КНД) определяется как отношение коэффициента усиления к КПД (для двузеркальных антенн КПД примем равным 0,8). При этих значениях, КНД определиться как:

; (4.2)

КНД=18448,854


Информация о работе «Проектирование информационной телекоммуникационной системы парома на трассе Калининград – Санкт-Петербург»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 56087
Количество таблиц: 1
Количество изображений: 6

Похожие работы

Скачать
273302
51
24

... мира (2,17 млн. кв. км.). Общая площадь "материковой" части страны - 42,9 тыс. кв. км. ПОГОДА Город to воды пн, 19.1 вт, 20.1 ср, 21.1 чт, 22.1 Дания Копенгаген - +2 / -1 частичная облачность -4 / -8 дождь со снегом -3 / -8 Эсбъерг +2 +5 / 0 +1 / -3 преимущественная облачность -1 / -5 преимущественная облачность ...

0 комментариев


Наверх