2.4 Резонансный метод
Резонансный принцип используется в датчиках давления на основе вибрирующего цилиндра, струнных датчиках, кварцевых датчиках, резонансных датчиках на кремнии. В основе метода лежат волновые процессы: акустические или электромагнитные. Это и объясняет высокую стабильность датчиков и высокие выходные характеристики прибора.
Частным примером может служить кварцевый резонатор (рис. 7). При прогибе мембраны, происходит деформация кристалла кварца, подключенного в электрическую схему и его поляризация. В результате изменения давления частота колебаний кристалла меняется. Подобрав параметры резонансного контура, изменяя емкость конденсатора или индуктивность катушки, можно добиться того, что сопротивление кварца падает до нуля – частоты колебаний электрического сигнала и кристалла совпадают – наступает резонанс.
Рисунок 7 – Упрощенный вид резонансного чувствительного элемента, выполненного на кварце
Преимуществом резонансных датчиков является высокая точность и стабильность характеристик, которая зависит от качества используемого материала.
К недостаткам можно отнести индивидуальную характеристику преобразования давления, значительное время отклика, не возможность проводить измерения в агрессивных средах без потери точности показаний прибора.
2.5 Индуктивный метод
Индукционный способ основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном (рис. 8). Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.
Рисунок 8 – Принципиальная схема индукционного преобразователя давления
Преимуществом такой системы, является возможность измерения низких избыточных и дифференциальных давлений, достаточно высокая точность и незначительная температурная зависимость.
Однако датчик чувствителен к магнитным воздействиям, что объясняется наличием катушек, которые при прохождении переменного сигнала создают магнитное поле.
Подводя итог, приведем основные достоинства и недостатки различных методов преобразования давления в электрический сигнал, результаты сведены в таблице 2.
Таблица 2 – Достоинства и недостатки измерителей давления
Достоинства | Недостатки | ||||||||||||
Тензометрический (КНС-преобразователи) | |||||||||||||
1. Высокая спень защиты от агрессивной среды. 2. Высокий предел рабочей температуры. 3. Налажено серийное производство. 4. Низкая стоимость. | 1 Неустранимая нестабильность градуировачной характеристики. 2. Высокие гистерезисные эффекты от давления и температуры. 3. Низкая устойчивость при воздействии ударных нагрузок и вибраций. | ||||||||||||
Пьезорезистивный (на монокристаллическом кремнии) | |||||||||||||
1. Высокая стабильность характеристик. 2. Устойчивость к ударным нагрузк-ам и вибрациям. 3. Низкие (практически отсутствуют) гистерезисные эффекты. 4. Высокая точность. 5. Низкая цена. 6. Возможность измерять. давление различных агрессивных средств. | 1. Ограничение по температуре (до 150ºC). | ||||||||||||
|
Различные сферы применений определяют свои требования к датчикам: для промышленности – надежность и стабильность характеристик, для лабораторных измерений и расходометрии – точность измерения давления и т.д. Еще одним важным параметром является цена датчиков, которые используют тот или иной принцип преобразования давления. Поэтому при выборе преобразователя необходимо определить наиболее выгодный вариант – соотношение цены к возможностям прибора. Очевидно там, где требуется только какой-либо определенный параметр датчика (например, точность или возможность измерять вакуум) соотношение цены к предъявляемым требованиям высокое. В основном это касается резонансных, индукционных, емкостных и ионизационных датчиков.
В большинстве случаев требуется несколько параметров преобразователей: точность, стабильность выходных характеристик, надежность, долговечность, низкая цена. Таким требованиям, как видно из вышеприведенной таблицы, удовлетворяют пьезорезистивные датчики давления и КНС-преобразователи. Выбрав КНС-преобразователи, вы получите надежные датчики работающие при высоких температурах (более 1500ºС), однако теряете в точности и стабильности выходных характеристик, по сравнению с преобразователями на монокристалличеком кремнии. Поскольку в основном требуется высокая стабильность выходных характеристик при невысоких температурах, то интегральные преобразователи давления являются в этом случае оптимальным решением, при невысокой цене.
3. Преимущества интегральных механоэлектрических преобразователей
Преимущества интегральных механоэлектрических преобразователей по сравнению с традиционными:
– монолитная конструкция преобразователей решает проблему сложности и высокой стоимости процесса установки и закрепления миниатюрных упругих элементов (мембран, балок и т.д.), поскольку упругий элемент выполнен с массивным основанием;
– тензочувствительный элемент является неотъемлемой частью упругого элемента преобразователя, представляя собой всего лишь область или совокупность областей различного типа проводимости и с различной степенью легирования примесей, полученной либо диффузией, либо ионной имплантацией, либо эпитаксией с помощью планарной технологии. Это исключает промежуточный, например соединительный, слой и тем самым устраняет явление ползучести и гистерезиса преобразователей характеристики и способствует повышению стабильности преобразователя;
– упругий элемент преобразователя выполнен из монокристаллического материала, обладающего более совершенными по сравнению с поликристаллическими или аморфными материалами упругими свойствами. Кроме того, относительные механические перегрузки, не вызывающие изменения характеристик интегральных преобразователей, в несколько раз превышают аналогичные перегрузки традиционных преобразователей. Это относится и к предельным разрушающим нагрузкам;
– использование технологии интегральных микросхем и, в частности, процесса фотоэлектронной литографии позволяет получить преобразователи с исключительно малыми размерами и массой;
– миниатюрность размеров упругих элементов интегральных преобразователей определяет их малую механическую инерционность а, следовательно, хорошие частотные свойства и малую чувствительность к механическим перегрузкам;
– использование технологии интегральных микросхем позволяет получать на одном упругом элементе совокупность тензочувствительных компонентов, объединённых в схему, например, полную резистивную мостовую схему, состоящую из различных тензочувствительных компонентов – тензотранзисторов и тензорезисторов. Это позволяет улучшить характеристики преобразователя и, в первую очередь, его чувствительность при тех же самых геометрических размерах;
– технология интегральных микросхем и использование монокристаллического материала для упругих элементов преобразователей определяют их значительно более высокую надежность по сравнению с традиционными преобразователями;
– групповой способ производства, включая автоматизированную настройку преобразователей, определяет их основное преимущество – существенно более низкую стоимость при сопоставимых технических характеристиках.
Перечисленные выше преимущества интегральных преобразователей, по сравнению с традиционными, связаны с улучшением практически всех технических и экономических характеристик преобразователей.
... соответствует – положительному эмиттеру и отрицательному коллектору. Для n-p-n – обратные полярности т.е. отрицательный эмиттер и положительный коллектор. Изобретение транзисторов явилось знаменательной вехой в истории развития электроники и поэтому его авторы Джон Бардин, Уолтер Браттейн и Уильям Шокли были удостоины нобелевской премии по физике за 1956 г. 4.3 Предпосылки ...
... – это техника и технологии сельского хозяйства, а также биотехнологии, позволяющие включать в предметное поле техники всю биологию. В последнее время особое внимание уделяется развитию современных социальных технологий, которые связаны с техникой как умением, искусством руководства людьми, государством, общественными отношениями, политическими процессами и т.п. В то же время существует «техника» ...
... —1981 гг. компьютерная технология претерпела настолько глубокие изменения, что эти годы ознаменовали собой поворотный пункт не только в истории вычислительной техники, но и во всей современной культуре. Появление микро-ЭВМ, т. е. персональных компьютеров, окончательно уничтожило “компьютерное жречество”. Хотя персональный компьютер очень быстро завоевал мир, на его создание ушло довольно много ...
... производительностью от 20 до 80 MFLOPS. Спрос на эти машины превзошел все ожидания. Явно рискованные инвестиции в программу Convex обернулись быстрым и солидным доходом от ее реализации. История развития суперкомпьютеров однозначно показывает, что в этой сложнейшей области инвестирование высоких технологий, как правило, дает положительный результат - надо только, чтобы проект был адресован ...
0 комментариев