2.6 Выбор, описание и расчеты элементной базы
Устройство предназначено для управления стандартными лампами накаливания. Подключение другой нагрузки, например энергосберегающей лампы или электродвигателя, может вывести устройство и (или) нагрузку из строя.
Полный перечень использованных компонентов (спецификация) прилагается (Приложение В). Также прилагаются описания активных компонентов, задействованных в схеме (Приложение Г).
а) Диодный мост
Применение диодного моста VD2, рассчитанного на ток 6 А, для работы с небольшим током нагрузки (максимум 0,55 А) объясняется тем, что лампы иногда перегорают во время работы. Возникающий при этом импульс тока амплитудой более 10...20 А способен повредить одноамперные мосты, такие как КЦ402 или КЦ405.
Ещё одна причина большого запаса по току – это гораздо меньшая степень нагрева моста. Впрочем, полностью устранять нагрев не имеет смысла, т.к. корпус устройства всё равно немного нагревается от ламп, особенно когда они включены на максимальную яркость.
По причине, указанной в разделе Защита от превышения сетевого напряжения, диодный мост должен быть рассчитан на обратное напряжение не менее 600 В.
б) Блок питания
Источник опорного напряжения
Особенностью схемы является использование для питания МК не обычного стабилитрона, а интегрального источника опорного напряжения DA1 параллельного типа. Как уже отмечалось, это позволяет отказаться от отдельного ИОН и снизить потребляемый ток. Помимо этого, если напряжение на выходе параллельного ИОН повысится по каким-либо причинам, возникшим со стороны шины питания схемы, это не приведёт к нарушению стабилизации, а лишь увеличит ток через ИОН. Это общая особенность параллельных стабилизаторов напряжения [3].
Нерегулируемый двухвыводной ИОН выбран специально – нет необходимости подбирать и устанавливать два дополнительных высокоточных резистора. Для стабильной работы данного ИОН не требуется конденсатор с низким эквивалентным последовательным сопротивлением (ESR), что тоже является плюсом.
Выбираем ИОН серии LM4040 с классом точности 1%.
в) Балластный резистор
Для гашения избытка сетевого напряжения, поступающего на вход ИОН, используется балластное сопротивление, образованное резисторами R1 и R2. Принцип действия ИОН параллельного типа совпадает с обычным стабилитроном, поэтому для расчёта гасящего резистора можно применить классическую формулу:
R = (Uвх – Uст) / (Iн + Iст), (2.1)
где Uвх – входное (ограничиваемое) напряжение, снимаемое с выхода диодного моста;
Uст – напряжение стабилизации стабилитрона;
Iн – ток нагрузки;
Iст – ток стабилитрона.
Изменим формулу с учётом падения напряжения на двух диодах диодного моста:
R = (Uвх – 2•Uд – Uст) / (Iн + Iст). (2.2)
Падение напряжения на предохранителе не учитываем, т.к. оно составляет всего 0,2 В при максимальной нагрузке. Добавив коэффициент, учитывающий разброс сопротивления резистора, получаем конечную формулу:
R = [(Uвх – 2•Uд – Uст) / (Iн + Iст)] • Кr (2.3)
Сопротивление резистора должно быть, с одной стороны, достаточно низким, чтобы обеспечить минимальный ток стабилитрона при максимальном токе нагрузки и минимальном напряжении сети, но, с другой стороны, достаточно высоким, чтобы при максимальном напряжении сети и минимальном токе нагрузки не превысить максимально допустимый ток стабилитрона.
Начнём с выяснения максимального сопротивления резистора, обеспечивающего минимальный ток стабилитрона при наихудших условиях.
Минимальное среднее значение выпрямленного напряжения Uвх при 10%-ном допуске на напряжение сети [4] составит 198 В. Но здесь следует также учесть снижение напряжения под воздействием мощной нагрузки. В расчёте максимальной яркости лампы указано снижение на 4 В. Значит
Uвх = 198 – 4 = 194 (В).
Наибольшее падение напряжения на диодном мосту Uд будет при максимальной нагрузке. Согласно графику из описания моста, при токе нагрузки 0,55 А, когда обе лампы включены на максимальную яркость, прямое напряжение для одного диода составляет около 0,73 В.
Отклонение стабилизированного напряжения равно 1% (по описанию LM4040, класс точности D). Значит
Uст = 5 + 0,05 = 5,05 (В).
Минимальный ток, требуемый для работы стабилитрона, в соответствии с его описанием, составляет Iст = 0,1 мА.
Поскольку в схеме используются два резистора, каждый из которых имеет допуск 5%, принимаем Кr = 0,9. Старение резисторов (увеличение сопротивления со временем) не учитывается, т.к. они не будут подвергаться ни максимально допустимому напряжению, ни высокой температуре.
Потребляемый ток почти не зависит от того, включены ли каналы, в каком количестве и на какой яркости.
В силу малых величин обратные токи защитного диода, диодного моста, транзисторов, а также токи утечки конденсаторов не учитываются.
В значительной степени на ток потребления влияет нажатие кнопок. В этом случае ток протекает от плюса источника питания через внутренний (pull-up) резистор МК и замкнутую кнопку на землю. Указанное в описании МК минимальное сопротивление внутреннего резистора составляет 20 кОм. Если нажаты обе кнопки, ток составит I=2 • (5 / 20000) = 0,5 (мА).
Таким образом, суммарный максимальный ток потребления по цепи +5В (при напряжении ровно 5,0 В) равен 2,2 + 0,5 = 2,7 мА (без учёта тока стабилитрона).
Значит, в худшем случае, т.е. при напряжении 5,05 В, потребляемый ток составит Iн = 5,05 • 2,7 / 5 = 2,73 мА.
Если бы в схеме использовался однополупериодный выпрямитель, этот ток нужно было бы удвоить.
Подставим полученные данные в исходную формулу (2.3):
R = [(194 – 2•0,73 – 5,05) / (0,00273 + 0,0001)] • 0,9 =
= [187,49 / 0,00283] • 0,9 = 66251 • 0,9 = 59626 (Ом)
Таким образом, балласт должен иметь сопротивление не более 60 кОм. Его можно получить, соединив последовательно два резистора по 30 кОм (о том, почему нельзя обойтись одним резистором, рассказано далее при расчёте его мощности).
Теперь для найденного сопротивления балластного резистора рассчитаем, не выйдет ли из строя стабилитрон, если сетевое напряжение увеличится до уровня ограничения защитного диода VD1, а также при воздействии других неблагоприятных факторов. Преобразуем ранее использованную формулу к следующему виду:
Iст = [(Uвх – 2•Uд – Uст) / (R • Кr)] – Iн. (2.4)
Для расчёта принимаем следующие численные значения:
Максимальное напряжение ограничения защитного диода Uвх = 548 В.
При отсутствии нагрузки падение напряжения на одном диоде диодного моста составит Uд = 0,65 В.
Минимальное напряжение стабилизации стабилитрона Uст = 5 – 0,05 = 4,95 (В).
Так как шунт составлен из двух резисторов, R = 30000 + 30000 = =60000(Ом).
Коэффициент сопротивления Кr принимаем равным 0,95, т.к. при этом ток стабилитрона будет больше.
Минимальный ток нагрузки будет при не нажатых кнопках. При номинальном напряжении питания 5 В этот ток равен 2,2 мА. Значит при минимальном напряжении 4,95 В ток будет равен Iн = 4,95 • 2,2 / 5 = 2,18 (мА).
Iст = [(548 – 2•0,65 – 4,95) / ((30000 + 30000) • 0,95)] – 0,00218 =
= [541,75 / 57000] – 0,00218 = 7,3 (мА).
Полученное значение меньше 12 мА – величины максимального тока ИОН, рекомендованного в его описании. Мощность ИОН, рассеиваемая при таком токе, составит 5 • 0,007 = 35 (мВт). Это более чем на порядок меньше его максимальной мощности 500 мВт. Следовательно, выбранное сопротивление балластного резистора нам подходит.
Переходим к расчёту мощности балластного резистора. На первый взгляд, казалось бы, резистора 0,5 Вт будет вполне достаточно, ведь он выдерживает напряжение до 350 В. На самом деле это не так. В [5] сказано, что мощность резистора, указываемая в его описании, действительна лишь в том случае, если его сопротивление выше так называемого критического. Последнее вычисляется по формуле:
Rк = Uпасп2 / Pпасп, (2.5)
где Uпасп – паспортное рабочее напряжение резистора,
Pпасп – его паспортная мощность.
Для резистора серии С2-23 мощностью 0,5 Вт критическое сопротивление Rк = 3502 / 0,5 = 245 (кОм). Если сопротивление резистора, как в нашем случае, меньше критического расчёт мощности следует производить по формуле: P = U2 / R. Учитывая максимальное напряжение сети, минимальное падение напряжения на диодном мосту, и минимальное напряжение стабилизации, мощность резистора будет равна:
P = (Uвх – 2•Uд – Uст)2 / R (2.6)
P = (242 – 2•0,65 – 4,95)2 / 60000 = 0,93 (Вт).
Однако оказалось, что мощности резистора 1 Вт тоже недостаточно. Экспериментальная проверка показала, что даже резистор 2 Вт (отечественный, серии МЛТ-2) сопротивлением 56 кОм сильно нагревается. Согласно требованиям проекта, это недопустимо. Нагрев балластного резистора является единственной причиной нагрева корпуса устройства в ждущем режиме. Поэтому необходимо этот нагрев устранить.
Попытка использования 5 Вт импортного резистора серии SQP сопротивлением 50 кОм проблему не решила – он нагревается почти до той же температуры, что и МЛТ-2.
В результате было решено использовать два 2 Вт резистора, соединив их последовательно. Помимо снижения температуры, это повышает надёжность устройства, т.к. в случае пробоя одного из резисторов, второй предотвратит выход ИОН из строя. Чтобы обеспечить равномерный нагрев, номиналы резисторов должны быть одинаковыми.
Предпочтительны отечественные 2 Вт резисторы серии МЛТ-2. Их габариты несколько больше импортных аналогов серии С2-23, зато они меньше нагреваются.
г) Фильтрующий конденсатор
Конденсатор С1 сглаживает пульсации выпрямленного напряжения. Хотя для расчёта его ёмкости можно было воспользоваться методикой из [6, стр.52, раздел 1.27 "Фильтрация в источниках питания"], конденсатор подбирался эмпирическим путём. Это вызвано следующим обстоятельством.
Через несколько секунд после окончания регулировки яркости её значение запоминается в EEPROM. Согласно описанию МК, ток программирования составляет 6 мА (при 5 В, 25°С). Отсюда следует, что по сравнению с током потребления в обычном режиме ток при записи возрастает почти в четыре раза: (2,2 мА + 6 мА) / 2,2 мА = 3,7. Цикл записи, согласно описанию МК, длится 8,5 мс, т.е. почти целый полупериод (10 мс). При таких условиях накопленный заряд конденсатора быстро истощается, что приводит к уменьшению напряжение питания МК и образцового напряжения АЦП. Визуально это выглядит как кратковременное однократное моргание лампы через несколько секунд после окончания регулировки яркости (эффект заметен при уровне яркости выше среднего).
Код программы построен таким образом, что циклы записи в EEPROM следуют друг за другом через каждые 10 мс. Если регулировка яркости прекращается одновременно для двух каналов, запись в память будет длиться на 8,5 мс больше. За 1,5 мс (10 мс – 8,5 мс) конденсатор не успеет полностью зарядиться, соответственно, напряжение опустится ещё ниже, и моргание лампы будет ещё заметнее, особенно при пониженном напряжении сети.
Поскольку заранее неизвестно, при какой амплитуде пульсаций моргание становится заметно (а именно к амплитуде пульсаций привязана формула в [6]), конденсатор подбирается экспериментально.
Номинал 1000 мкФ позволяет устранить моргание после окончания регулировки яркости одного канала, и сделать моргание почти не заметным после одновременного окончания регулировки яркости обоих каналов. Дальнейшему повышению ёмкости конденсатора препятствуют малые габариты устройства.
Конечно, можно было организовать задержку между последовательными записями в EEPROM. Однако увеличение времени выполнения основной программы за счёт добавления кода, в данном случае не оправдано. Во-первых, мала вероятность того, что обе кнопки будут отпущены одновременно, причём на уровне яркости выше среднего для обеих ламп. Во-вторых, невелика вероятность того, что напряжение в сети упадёт до 198 В. Наконец, в-третьих, эффект моргания слишком мало заметен чтобы уделять этому внимание.
На функционировании ИОН большая величина ёмкости не отражается, т.к. в его описании сказано, что допустима ёмкостная нагрузка любого номинала.
После подключения устройства к сети, чтобы к началу основного цикла программы напряжение питания МК успело стабилизироваться на номинальном уровне, требуется организовать задержку старта. Если этого не сделать, то вследствие заниженного опорного напряжения АЦП нарушится плавность автоматического включения каналов.
Учитывая прямую зависимость частоты внутреннего RC-генератора МК от напряжения питания, а также погрешность измерений, была выбрана задержка с запасом, равная 4 секундам. Часть этой задержки обеспечивается внутренними узлами МК Power-on Reset и Brown-out Detection (BOD, супервизор питания). Оставшаяся часть реализована программно.
Переходим к выбору номинального напряжения конденсатора. Этот параметр в значительной степени определяет срок его службы. В [8] рекомендуется, чтобы рабочее напряжение составляло 80…100% от номинального. С другой стороны, в [9] рекомендуется, чтобы рабочее напряжение было в два раза меньше номинального. Выбираем конденсатор с напряжением 6,3 В.
Здесь имеет смысл обратить внимание на следующий факт. В описаниях электролитических конденсаторов фирмы Jamicon указано, что, начиная с рабочего напряжения 25 В, их ёмкость изменяется со временем на 20%. Для меньших же напряжений это значение равно 25%.
Верхний предел температурного диапазона, на который рассчитан выбранный конденсатор, составляет 105°С. Это ещё один параметр, в значительной степени влияющий на срок службы конденсатора. Выбор обусловлен также тем, что корпус устройства немного нагревается от ламп, диодного моста и балластного резистора.
Уменьшение ёмкости конденсатора, связанное с разбросом номинала или старением, не нарушит работоспособность устройства. Возможно лишь чуть более заметное моргание ламп в момент запоминания яркости.
д) Микроконтроллер
Несмотря на то что напряжение питания схемы составляет 5 В, используемый МК U1 имеет индекс L, означающий возможность работы при напряжении питания от 2,7 до 5 В. Это связано с большой ёмкостью фильтрующего конденсатора, т.е. с плавным нарастанием напряжения питания при подключении устройства к сети.
Порог встроенного в МК супервизора питания выставлен в соответствии с описанием на 2,7 В. Если же этот порог сделать равным 4,0 В, или использовать обычный МК (без индекса L) с порогом 4,0 В, или вообще отказаться от встроенного супервизора, некоторые экземпляры МК могут не запуститься, особенно при минимальном напряжении сети 198 В. Использовать же обычный МК с порогом 2,7 В нельзя, т.к. это может привести, в частности, к искажению данных EEPROM, если во время сохранения информации произойдёт отключение питания.
МК тактируется внутренним RC генератором на частоте 1 МГц. Этого достаточно чтобы получить среднее время выполнения основной программы около 0,5 мс. Здесь важно помнить о том, что повышение тактовой частоты увеличивает ток потребления. Стабилизировать частоту кварцевым или керамическим резонатором не требуется, т.к. в данном применении высокая точность не нужна. Также не требуется калибровка внутреннего генератора.
Производитель МК рекомендует предпринять следующие меры при работе с АЦП:
- установить между выводом REF и общим проводом фильтрующий конденсатор;
- соединить вывод AGND с аналоговой землёй;
- использовать LC фильтр питания в цепи AVCC;
- при измерении не переключать выводы АЦП порта, если они настроены как цифровые выходы.
Поскольку высокая достоверность результата измерения не требуется, то с целью упрощения схемы, вышеуказанные меры не соблюдаются. Калибровка АЦП тоже не требуется, в том числе потому, что используется обычный канал, а не дифференциальный [12, раздел 2.3].
Несмотря на принятые упрощения, точность, т.е. повторяемость схемы, от этого не ухудшается. Благодаря внешнему ИОН, используемому также в роли стабилизатора питания МК, результаты измерений АЦП всегда остаются стабильными вплоть до младшего значащего разряда, даже при 10- битном разрешении АЦП.
По рекомендации ATMEL, для обеспечения надёжной работы МК, в непосредственной близости от его выводов питания установлены блокировочные конденсаторы С2 (керамический) и С3 (танталовый электролитический). В данной схеме это особенно актуально, т.к. при коммутации затворов транзисторов, обладающих довольно высокой ёмкостью, возникают значительные импульсные токи.
Для программирования МК предусмотрен разъём JS4 "ISP" (In-System Programming, внутрисхемное программирование). Также как и при программировании EEPROM самой программой во время работы, во время внутрисхемного программирования ток МК, согласно его описанию, составляет 6 мА (при 5 В и 25°С). По результатам измерений максимальный потребляемый ток находился в интервале от 4,3 мА до 5,8 мА. Из-за малой мощности блока питания напряжение во время программирования снижалось примерно до 3,3 В. Однако многократный опыт перепрограммирования МК показал что это безвредно. Более того, в Интернете встречаются сообщения о том, что МК нормально программируется при напряжении вплоть до 3 В.
При программировании МК в составе устройства важно обратить внимание на следующие моменты:
– требуется гальваническая развязка программатора, поскольку схема находится под потенциалом сети;
– может потребоваться внешний блок питания (тоже с гальванической развязкой), если программатору будет недостаточно тока, вырабатываемого блоком питания схемы;
– желательна установка высокоомных резисторов (порядка 100 кОм) между затворами и истоками транзисторов чтобы не допустить их возможного перегрева, а также выхода из строя из-за самопроизвольного открывания и увеличения сопротивления канала, вызванного тем, что во время программирования выводы МК находятся в высокоимпедансном состоянии.
Поэтому лучшим вариантом, возможно, окажется запрограммировать МК до установки в схему.
Состояние фьюзов МК соответствует значениям по умолчанию, за исключением запрограммированного фьюза BODEN, разрешающего использование встроенного супервизора питания (Рисунок 2.5).
Рисунок 2.5 – Программирование фьюзов МК
Ранее отмечалось, что МК с незадействованным супервизором питания может не запуститься. Чтобы обойти это ограничение и иметь возможность запрограммировать фьюз, следует после появления напряжения питания кратковременно соединить вывод Reset МК с общим проводом.
Рекомендуется использовать программатор – avrdude . В частности, он входит в состав бесплатной среды разработки WinAVR.
Не показанные на схеме выводы МК никуда не подключены.
ж) Делитель напряжения
Резисторы R3 и R4 образуют делитель, необходимый МК для измерения напряжения сети и определения момента перехода фазы через нуль. Обычно резистор между выходом диодного моста и входом МК рекомендуется составлять из двух включенных последовательно (на случай пробоя одного из них), но поскольку перед диодным мостом установлен защитный диод, эта рекомендация не выполняется.
Делитель должен быть рассчитан таким образом, чтобы при максимальном входном напряжении Uвх выходное напряжение делителя Uвых не превышало напряжение питания МК. Эта величина определяется прямым напряжением внутреннего диода МК. В данной схеме важно чтобы входной сигнал не превышал минимальное напряжение питания МК, потому что это напряжение является опорным для АЦП. Иначе результатом АЦП будут коды соответствующие опорному напряжению, а не истинному значению входного сигнала.
Согласно описанию МК, АЦП рассчитан на обработку низкоомных сигналов (10 кОм и менее). Поэтому для нижнего плеча делителя напряжения выберем номинал равный 9,1 кОм, чтобы предусмотреть 5%-ный допуск сопротивления.
Для вычисления минимального сопротивления верхнего плеча делителя воспользуемся стандартной формулой:
Uвых = (Uвх • R2) / (R1 + R2). (2.6)
Отсюда: R1 = ((Uвх – Uвых) • R2) / Uвых (2.7)
Введём коэффициент Квх, определяющий максимальное отклонение сетевого напряжения:
R1 = ((Uвх•Квх – Uвых) • R2) / Uвых (2.7,а)
Поскольку нас интересует полный размах сетевого напряжения, перепишем формулу с учётом амплитудного значения:
R1 = ((Uвх•Квх•1,41 – Uвых) • R2) / Uвых. (2.7,б)
Учтём падение напряжения на двух диодах диодного моста:
R1 = ((Uвх•Квх•1,41 – 2•Uд – Uвых) • R2) / Uвых (2.7,в)
Падение напряжения на предохранителе не учитывается, т.к. оно составляет всего 0,2 В при максимальной нагрузке.
Осталось добавить коэффициенты Кr, определяющие отклонение резисторов от номинала:
R1 = ((Uвх•Квх•1,41 – 2•Uд – Uвых) • R2 • Кr2) • Кr1 / Uвых (2.7,г)
Переходим к подстановке численных значений.
Входное напряжение Uвх = 220 В, его отклонение Квх = 10%.
В качестве значения Uд берём минимальное падение напряжения, т.к. в этом случае сопротивление резистора R1 будет больше. Минимальное падение напряжения на диодах моста будет при минимальном токе, т.е. при отключенной нагрузке. Судя по графику из описания диодного моста, падение напряжения на одном элементе при токе нагрузки 10 мА равно примерно
Uд = 0,65 В
Благодаря использованию фильтрующего конденсатора большой ёмкости, пульсациями БП можно пренебречь. Поэтому минимальное напряжение питания МК определяется минимальным напряжением стабилизации ИОН, что, согласно описанию последнего, равно
Uвых = 5 – 1% = 4,95 В
Стандартный допуск на отклонение сопротивления резисторов равен
Кr = 5%. Нужно предусмотреть ситуацию, когда сопротивление R2 (R3 по схеме) будет больше, т.к. при этом Uвых тоже увеличится. Это, как было отмечено ранее, может привести к неверному результату измерения. Поэтому принимаем Кr2 = 0,95. С сопротивлением R1 (R4 по схеме) ситуация противоположная – важно учесть уменьшение сопротивления. Поэтому Кr1 = 1,05.
Подставляя численные значения в формулу, получаем:
R1 = ((220•1,1•1,41 – 2•0,65 – 4,95) • 9,1•103 • 0,95) • 1,05 / 4,95 = =(334,97 • 8,65•103) • 1,05 / 4,95 = 3042,37•103 / 4,95 = 614,6•103 (Ом).
Ближайшим сопротивлением из стандартного ряда, превышающим полученное значение, является номинал 620 кОм.
Поскольку падение напряжения на резисторе верхнего плеча делителя может достигать 242 • 1,41 = 341 (В), резистор должен иметь мощность 0,5 Вт. Как было показано при расчёте балластного резистора, на паспортную мощность можно ориентироваться только тогда, когда сопротивление резистора больше критического. Для резистора серии С2-23 мощностью 0,5 Вт критическое сопротивление Rк = 3502 / 0,5 = 245 (кОм), что почти в три раза меньше чем 620 кОм. Значит, мощность резистора 0,5 Вт в данном случае выбрана правильно.
к) Выходной каскад
Нагрузка коммутируется N-канальными MOSFET транзисторами VT1 и VT2. Особенностью схемы является отсутствие драйвера, что в соответствии с требованием проекта уменьшает количество используемых компонентов. Транзисторы управляются напрямую выходами МК.
Как выяснилось, при напряжении на затворе 5 В и мощности нагрузки 60 Вт канал транзистора почти полностью открывается, даже несмотря на довольно высокое сопротивление резистора в цепи затвора. Так происходит благодаря тому, что ток нагрузки (около 0,25 А) составляет величину примерно в 20 раз меньшую максимально допустимого тока стока транзистора. При таких условиях падение напряжения на переходе сток-исток транзистора составляет менее 1 В, что не приводит к заметному на глаз снижению максимальной яркости лампы.
Тока выхода МК оказывается достаточно для перезарядки ёмкости затвора благодаря невысокой частоте переключения (100 Гц). Это примерно на два порядка меньше частоты, на которой работают MOSFET транзисторы в традиционных переключательных схемах, например в импульсных источниках питания.
Отсутствие драйвера может привести к самопроизвольному включению транзистора в случае резкого всплеска напряжения на стоке. Этот эффект, известный под названием CdV\dt turn-on, вызван наличием ёмкости между затвором и стоком (ёмкость Миллера). Иногда вернуть транзистор в нормальный режим работы удаётся лишь после отключения схемы от сети на несколько минут (на время остывания транзистора). Одним из лучших способов предотвратить случайное включение является выбор транзистора, у которого соотношение Qgd / Qgs1 составляет величину менее 1,4 [7]. Здесь Qgd – это величина заряда затвор-сток, Qgs1 – это величина заряда, при котором напряжение на затворе достигает порогового значения (определяется по графику Total Gate Charge). К сожалению, транзисторы, соответствующие данному правилу, встречаются крайне редко. С другой стороны, случаи резких всплесков напряжения на стоке тоже крайне редки.
При резком спаде напряжения на стоке и отсутствии драйвера ёмкость Миллера не приводит к самопроизвольному включению транзистора, но на затворе может возникнуть отрицательный потенциал, превышающий допустимое напряжение затвор-исток [10, раздел 3]. Это может стать причиной выхода транзистора из строя. Поэтому одним из критериев при выборе транзистора стало наличие встроенного ограничителя напряжения на затворе. Такое решение позволило отказаться от дополнительных внешних компонентов. Кроме этого, встроенный ограничитель предохраняет затвор от воздействия статического электричества, к которому MOSFET транзисторы как класс приборов имеют высокую чувствительность.
При напряжении ограничения встроенного в транзистор ограничителя около 30 В и сопротивлении резистора в цепи затвора 10 кОм ток через выход МК составит примерно 3 мА, что в три раза превышает допустимый. Поэтому для повышения надёжности схемы между затвором и истоком транзистора можно поставить дополнительный ограничитель с максимальным напряжением ограничения до 10 В. При таком напряжении ток через внутренние защитные диоды МК будет находиться на безопасном уровне 1 мА.
Также для повышения надёжности можно поставить высокоомный резистор (порядка 100 кОм) между затвором и истоком транзистора. Это предотвратит включение транзистора, когда выходы МК находятся в высокоимпедансном состоянии, например при срабатывании супервизора питания или сторожевого таймера. Поскольку такие ситуации кратковременны и маловероятны, резисторы затвор-исток не используются, поэтому на схеме не показаны.
Транзисторы
Для того чтобы транзистор был пригоден для использования в данном устройстве, он должен обладать следующими характеристиками:
- ток стока – не менее 6 А, типовое сопротивление канала – не более 1 Ом;
- напряжение сток-исток – не менее 600 В;
- двусторонний ограничитель напряжения на затворе – есть;
- максимальное пороговое напряжение затвор-исток – менее 5 В;
- график зависимости тока стока от напряжения на затворе – нормирован для напряжения затвора 5 В или меньше. То же относится к графику зависимости тока стока от напряжения сток-исток.
Кроме этого, в соответствии с требованием к проекту транзистор не должен сильно нагреваться, в идеале – не нагреваться вообще. Величина нагрева Tja характеризуется формулой:
Tja = P • Rth = R • I 2 • Rth + 25°C, (2.8)
Где R – сопротивление канала сток-исток;
I – ток нагрузки;
Rth – тепловое сопротивление транзистора (корпус-окружающая среда).
Так как частота переключения транзистора не превышает 100 Гц, его динамические потери малы, на нагрев не влияют, и поэтому в формуле не учитываются.
Из формулы следует, что транзистор должен иметь как можно меньшее значение теплового сопротивления. Выбранный транзистор имеет корпус практически идентичный корпусу TO220, и обладает относительно невысоким тепловым сопротивлением (62,5°C).
По причине, указанной далее в разделе Защита от превышения сетевого напряжения, транзистор должен быть рассчитан на напряжение сток-исток не менее 600 В. Помимо этого, в случае обрыва защитного диода транзистор не выйдет из строя при аварийном повышении напряжения сети вплоть до 380 В±10%.
По результатам изучения продукции основных производителей MOSFET транзисторов (Infineon, International Rectifier, Ixys, Fairchild, NEC, NXP, ON Semiconductors, Renesas, Toshiba, Vishay) выяснилось, что встроенный ограничитель напряжения на затворе имеется только у транзисторов фирмы Toshiba (данные 2009 года). Следует отметить, что рекомендация основана только на изучении описаний транзисторов. В частности, может потребоваться подбор резистора в цепи затвора.
Теоретически в устройстве можно применить и IGBT транзисторы. Однако найти такие экземпляры, которые удовлетворяли бы всем вышеперечисленным требованиям, не удалось. Кроме того, MOSFET транзисторы, как правило, дешевле. К сожалению, так называемые logic level транзисторы, управляемые цифровыми уровнями сигналов и подходящие по остальным параметрам, в частности, рассчитанные на напряжение 600 В, пока не существуют.
л) Резисторы в цепи затвора
Сопротивление резисторов R5 и R6 оказывает влияние на следующие факторы:
- защиту выхода МК от броска тока при перезарядке входной ёмкости транзистора (чем больше сопротивление, тем меньше ток);
- защиту выхода МК от превышения напряжения на затворе, которое возникает из-за ёмкости Миллера (чем больше сопротивление, тем лучше защита);
- степень нагрева транзисторов (чем меньше сопротивление, тем меньше нагрев);
- уровень помех радио- и ИК-приёму, а также в электросети (чем больше сопротивление, тем меньше помех);
- силу звона нитей ламп накаливания (чем больше сопротивление, тем меньше звон).
Влияние сопротивления на ток потребления, а также на падение напряжения на переходе сток-исток транзистора в силу малых величин не учитывается
Анализируя перечисленные факторы, приходим к очевидному выводу, что, в целом, чем больше сопротивление, тем лучше. Однако слишком сильно его увеличивать тоже нельзя – это приведёт к нагреву транзистора.
Для начала выясним минимально допустимое сопротивление резистора в цепи затвора. Оно определяется безопасным уровнем тока выхода МК при перезарядке ёмкости затвора транзистора. В этот момент выход МК оказывается кратковременно замкнут на землю. Учитывая ток выхода по описанию МК 20 мА и напряжение питания 5 В, по закону Ома получаем минимально допустимое сопротивление 250 Ом.
Теперь попробуем определить номинальное сопротивление резистора с точки зрения ограничения напряжения на выводе МК. В описании МК сказано, что уровень безопасного тока, протекающего через внутренние диоды, составляет 1 мА. Максимально допустимое напряжение на затворе транзистора, указанное в его описании, составляет ±30 В. Встроенный в транзистор двусторонний ограничитель не позволяет напряжению превысить эту величину. Следовательно, чтобы обеспечить безопасный ток через внутренние диоды МК потребуется сопротивление R = 30 / 0,001 = 30 кОм. При таком высоком сопротивлении в цепи затвора увеличится сопротивление канала сток-исток. Это приведёт к уменьшению яркости лампы и нагреву транзистора. Следовательно, выбирать сопротивление по данному критерию нельзя. Кроме того, как было отмечено ранее, вряд ли в бытовой электросети встретятся ситуации, вызывающие значительное повышение напряжения на затворе.
Остаётся выбирать сопротивление, ориентируясь на степень нагрева транзистора, уровень помех и силу звона нити лампы. Два последних фактора требуют высокого сопротивления резистора, а первый – низкого. Получается, что сопротивление надо выбирать как компромисс.
Следует отметить, что помимо неприятного жужжания, звон нити лампы резко сокращает её ресурс. Тестирование ламп различных производителей на минимальный уровень звона нити позволило расположить их в следующем порядке предпочтений: Osram, Philips, General Electric. В результате выбор остановился на матовых лампах Osram Classic B FR 60 230V E14/SES, 660lm, Energy index E.
м) Цепь защиты
Предохранитель F1 и защитный диод VD1 формируют цепь защиты, которая предохраняет устройство от выхода из строя при коротком замыкании нагрузки, превышения её мощности, а также при бросках напряжения в сети, и аварийного повышения её напряжения до 380 В.
Предохранитель рассчитывается, исходя из максимальной нагрузки, по стандартной формуле:
I = P / U. (2.9)
Отсюда I = 2 • 60 / 220 = 0,55 (А). Ток потребления схемы при этом не учитывается, т.к. в сравнении он пренебрежимо мал. Вполне допустимо выбрать предохранитель на 0,5 А.
Чтобы защитить чувствительные полупроводниковые приборы, используется быстродействующий предохранитель. Для отечественного предохранителя серии ВП2Б-1В время срабатывания при превышении номинального тока в 2,75 раза равно 1 секунде. Предохранители с замедленным временем срабатывания (в керамическом или стеклянном корпусе) при выходе из строя издают резкий и громкий звук, оставляя на плате (или на стене ) чёрное пятно. Выбор сделан в пользу керамического корпуса, т.к. стеклянные корпуса при срабатывании иногда рассыпаются.
Использовать современные полимерные предохранители в данной схеме не представляется возможным из-за их сильного нагрева и невысокой скорости срабатывания. Например, для предохранителя LB600LV время срабатывания при токе нагрузки 3 А составляет 36 секунд.
Защита от короткого замыкания нагрузки и превышения её мощности
Возможны два варианта короткого замыкания: при выключенной нагрузке и при включенной нагрузке.
В первом случае ток возрастает медленно, т.к. нагрузка всегда включается при нулевом напряжении в сети, и яркость лампы всегда увеличивается плавно. Поскольку в устройстве применён быстродействующий предохранитель, он успевает перегореть, защищая другие элементы схемы.
Во втором случае ток мгновенно возрастает настолько, что предохранитель не успевает защитить чувствительный к перегрузкам транзистор. В результате транзистор выходит из строя первым. Теоретически это говорит о том, что транзистор может не выдержать перегрузку, которая возникает, если лампа перегорит во время работы, т.к. ток при этом достигает несколько десятков ампер.
Короткое замыкание в цепи питания +5 В устройству не страшны, т.к. в этом случае роль ограничителя тока играет балластный резистор.
При повышенной мощности нагрузки устройство ведёт себя так же как в случае короткого замыкания при выключенной нагрузке.
Установлено, что при выходе из строя транзистора все его выводы оказываются замкнутыми между собой. Поскольку в этом случае на затворе будет потенциал земли, предпринимать дополнительные меры по защите выходов МК не требуется.
Защита от превышения сетевого напряжения
Для защиты от высоковольтных помех, возникающих в электрической сети, например при грозовых разрядах, применяется двусторонний полупроводниковый ограничитель напряжения – защитный диод. По сравнению с варисторами защитные диоды обладают более высоким быстродействием, что позволяет использовать их для предохранения высокочувствительных полупроводниковых приборов, к которым, в частности, относятся и микроконтроллеры. Кроме того, в отличие от варисторов их характеристики не ухудшаются со временем.
Защитный диод устанавливается параллельно входу устройства непосредственно за предохранителем. Выводы защитного диода служат теплоотводом. Согласно описанию, длина каждого вывода должна составлять 10 мм.
Если в течение некоторого времени ток через защитный диод будет превышать ток срабатывания предохранителя, последний перегорает, защищая устройство. Чем больше превышение тока, тем быстрее сработает предохранитель. Как уже отмечалось, применённый в схеме быстродействующий предохранитель имеет время срабатывания 1 сек. при превышении номинального тока в 2,75 раза.
Если мощность высоковольтного импульса будет больше мощности защитного диода (например, при аварийном повышении сетевого напряжения до 380 В), защитный диод может выйти из строя. При этом выводы защитного диода окажутся замкнутыми накоротко, что приведёт к перегоранию предохранителя. Остальные элементы схемы останутся неповреждёнными. В данном случае для восстановления работоспособности устройства потребуется заменить и предохранитель, и защитный диод.
При воздействии высоковольтного импульса напряжение на входе диодного моста не превысит максимальное напряжение ограничения защитного диода.
Напряжение ограничения защитного диода зависит от длительности импульса, и для указанного на схеме типа составляет 548 В для 1000 мкс и 706 В для 20 мкс. В большинстве случаев, описанных в, при выборе защитного диода следует руководствоваться напряжением, которое соответствует длительности импульса 1000 мкс. Поэтому будем считать, что напряжение на входе диодного моста, ни при каких обстоятельствах не превысит порог 548 В.
Теперь проанализируем, выдержат ли компоненты устройства напряжение ограничения 548 В. Лампы и предохранитель не учитываются, т.к. их выход из строя не является фатальной неисправностью и легко устраняется заменой. Также можно не учитывать балластный резистор и резистор верхнего плеча делителя напряжения, поскольку высоковольтные и углеродистые (film) резисторы хорошо переносят кратковременные (до 5 секунд) перегрузки, превышающие номинальное напряжение в 1,5 и 2,5 раза соответственно [5]. Долговременной перегрузки в данном случае не будет, т.к. сработает предохранитель.
Диодный мост и транзисторы рассчитаны на 600 В. Как было показано ранее при расчёте балластного резистора, при напряжении 548 В ток через ИОН не превысит 7 мА, что на 5 мА меньше его максимального рабочего тока 12 мА. Ток внутренних диодов МК при сопротивлении верхнего плеча делителя напряжения 620 кОм не превысит I = 548 / 620000 = 0,88 мА, что укладывается в допустимый предел 1 мА.
Таким образом, повышение сетевого напряжения до уровня ограничения защитного диода не приведёт к выходу из строя элементов схемы.
н) Расчёт потребляемой мощности
Как следует из анализа принципиальной схемы, потребляемый ток складывается из следующих составляющих: ток делителя напряжения Iд, ток стабилитрона Iст, и ток нагрузки блока питания Iн. В силу малых величин, обратные токи защитного диода, выпрямительного моста, транзисторов, а также токи утечки конденсаторов не учитываются. Итак,
P = Uвх • (Iд + Iст + Iн). (2.10)
Ток делителя напряжения определим по закону Ома с учётом падения напряжения на диодах выпрямительного моста:
P = Uвх• (((Uвх – Uд) / Rд) + Iст +Iн). (2.11)
Для расчёта тока стабилитрона и тока нагрузки преобразуем формулу (2.4), использованную при расчёте балластного резистора, к виду:
Iст + Iн = (Uвх – 2•Uд – Uст) / Rб. (2.12)
С учётом коэффициента, учитывающего отклонение сопротивлений резисторов, конечная формула будет иметь вид:
P = Uвх • [((Uвх – 2•Uд) / Rд•Кr) + ((Uвх – 2•Uд – Uст) / Rб•Кr)] (2.13)
Рассчитаем максимальную мощность, потребляемую устройством в ждущем режиме, при номинальном напряжении сети Uвх = 220 В и минимальном напряжении стабилизации Uст = 4,95 В.
Падение напряжения на диоде выпрямительного моста Uд = 0,65 В.
Общее сопротивление делителя напряжения определяется суммой последовательно включенных сопротивлений:
Rд = 620000 + 9100 = 629100 (Ом).
По аналогии:
Rб = 30000 + 30000 = 60000 (Ом).
Отклонение номиналов резисторов 5%, т.е Кr = 0,95.
Подставляем данные в формулу (2.13):
P = 220 • [((220 – 2•0,65) / 629100•0,95) +
+((220 – 2•0,65 – 4,95) / 60000•0,95)] =
= 220 • [0,00037 + 0,0038] = 0,92 (ВА).
Потребляемый устройством ток от сети в ждущем режиме при номинальном сетевом напряжении, составляет 4,0 мА.
Отсюда P = 220 • 0,004 = 0,88 ВА, что находится в пределах рассчитанной величины.
Поскольку в ждущем режиме устройство представляет собой чисто активную нагрузку, активная мощность в данном случае эквивалентна полной мощности: Р = 0,92 ВА = 0,92 Вт.
Интересно отметить, что при увеличении яркости канала с минимума до максимума коэффициент мощности (power factor) увеличивается с 0,22 до 0,98.
Рассчитанная потребляемая мощность соответствует европейской директиве 1275/2008/ЕС от 17 декабря 2008 года, согласно которой уровень энергопотребления устройств, выпускаемых с 07 января 2010 года, не должен превышать 1 Вт в ждущем режиме.
2.7 Разработка схемы электрической принципиальной
После выбора компонентов и расчета элементной базы приступаем к разработке схемы электрической принципиальной в Accel EDA (Рис. 2.7).
Рисунок 2.7 - Принципиальная схема устройства автоматического регулирования света в Accel EDA
Схема электрическая принципиальная устройства автоматического регулирования света на микроконтроллере приведена в Приложении Ж.
... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...
... устройств относительно не велика, соответственно по форме финансирования это могут быть и частные фирмы и госпредприятия. Величина закупок данного вида устройств не может быть высока, т.к. операция измерения отношения двух напряжений является весьма специфической, хотя как таковая она может быть использована в управлении различными техпроцессами на заводах. Приобретая разрабатываемое устройство, ...
... среды; · расчет разности температур; · автоотключение; · индикатор разряда батареи; · подсветка дисплея; · питание 9 В («Крона»). 2 ОБОСНОВАНИЕ СПОСОБА ПОСТРОЕНИЯ ФУНКЦИОНАЛЬНОЙ СХЕМЫ УСТРОЙСТВА Функциональная схема устройства для измерения температуры в удаленных точках приведена на рис. 2.1. Устройство для измерения температуры в удаленных точках предназначенное для ...
... расчётов стоимости изготовления, очевидно, что предложенное устройство обладает конкурентоспособной ценой в условиях рыночной экономики, при промышленном производстве. При внедрении устройства автоматической подачи электропитания по расписанию, себестоимость его изготовления может быть снижена, за счёт экономии материалов и более низких цен на комплектующие при оптовой закупке. 4 Охрана труда ...
0 комментариев