1. Время жизни неосновных носителей должно быть большим для обеспечения незначительного напряжения тиристора в открытом состоянии.
2. Необходимо обеспечить достаточную глубину залегания диффузионных переходов, чтобы они могли выдерживать высокое блокирующее напряжение.
Поскольку мощный тиристор имеет большие размеры, полупроводниковый материал должен обладать равномерным распределением донорной примеси и совершенной кристаллической структурой.
Для достижения высоких значений блокирующего напряжения необходимо обеспечить низкую концентрацию примеси.
Для уменьшения напряжения в открытом состоянии прибора требуется высокая подвижность носителей заряда.
Материал должен выдерживать высокую температуру и иметь большую теплопроводность [4].
Полупроводником с большой подвижностью носителей является германий, его применение ограничено из-за высокой собственной концентрации носителей и малой ширины запрещенной зоны. Малая ширина запрещенной зоны приводит к большой утечке тока при повышении температуры, а собственная концентрация носителей ограничивает напряжение лавинного пробоя. Низкая температура плавления не позволяет получить переходы с большой глубиной диффузионного слоя. В германии легко формируется сплавной р-n-переход, что используется для диодов, но неприемлемо для тиристоров.
Кремний - это полупроводник с высокой температурой плавления, низкой собственной концентрацией носителей, умеренно широкой запрещенной зоной и высоким временем жизни носителей заряда. Подвижность носителей в кремнии уступает по абсолютному значению, как германию, так и арсениду галлия, что приводит к большему падению напряжения во включенном состоянии. Как бы то ни было, это адекватно компенсируется большим временем жизни неосновных носителей и хорошими термическими свойствами материала. Кроме перечисленных преимуществ кремния существует современная промышленная технология его изготовления и возможность введения фосфора методом нейтронной трансмутации [3].
Процесс легирования кремния с помощью нейтронной трансмутации ограничивается кремнием n-типа, так как в этом случае образуется только примесь фосфора. Однако это обстоятельство не создает никаких дополнительных проблем, поскольку большинство тиристоров большой мощности производится из кремния n-типа. Из такого материала легче образовать глубокий диффузионный слой р-типа, используя быстродиффундирующие примеси, например галлий или алюминий. Заметим также, что время жизни неосновных носителей заряда в кремнии n-типа больше, чем в кремнии р-типа.
Исходя из вышеизложенного в качестве материала для тиристоров больше всего подходит кремний. Изготовители получают кремний методом зонной плавки с ориентациями (111) и (100). Ориентация (100) неприменима, когда используются сплавные контакты с эвтектическим силумином, поскольку в приборах большой мощности может происходить неравномерное проникновение Аl с этих контактов в кремний.
Следует выбрать тип легирующей примеси и толщину материала. Применительно к кремнию в качестве основного параметра предпочтительно выбирают сопротивление, а не уровень концентрации примеси, так как сопротивление может быть легко измерено.
Удельное сопротивление р, Ом·см, определяется как коэффициент пропорциональности между током и напряженностью электрического поля в материале из выражения:
E = pJ (2.9)
Для полупроводника сопротивление зависит от концентрации и подвижности как электронов, так и дырок. Поэтому:
Р= (2.10)
Из уравнения (2.9) видно, что сопротивление обратно пропорционально концентрации носителей. Однако концентрации носителей и примеси не одинаковы, так как при заданной температуре не все доноры и акцепторы примеси могут быть ионизированы. Зависимость удельного сопротивления от концентрации примеси, вычисленная для кремния, легированного фосфором [7], приведена на рис. 3.1.
Прямое и обратное напряжения пробоя зависят от напряжения лавинного пробоя и суммарных коэффициентов передачи двух составных транзисторов αпрп и αрпр. Напряжение лавинного пробоя определяется в основном концентрацией доноров в n-базе и, следовательно, ее удельным сопротивлением. Коэффициенты передачи транзисторов αпрп и αрпр в значительной степени определяются эффективной толщиной базы транзистора. Поэтому толщина кремния и концентрация донорной примеси в n-базе определяют напряжение пробоя транзистора.
Cледует отметить, что в основном для мощных тиристоров используется слой кремния толщиной от 300 до 1000 мкм с удельным сопротивлением 50-300 Ом·см.
Рисунок 2.2 - Зависимость удельного сопротивления при 300 К от концентрации примеси для кремния n-типа: ;
a) NB= 10l21014 см-3;
б) NB=10141016 см-3
Время жизни неосновных носителей заряда в кремнии влияет на такие важные характеристики прибора, как его утечки, напряжение в открытом состоянии и время выключения, этот параметр также необходимо учитывать при изготовлении тиристора.
2.4 Время жизни неосновных носителей зарядаЕсли в полупроводнике имеется избыток носителей, обусловленных, например, инжекцией или тепловой генерацией, то предполагается, что при тепловом равновесии инжекция или генерация носителей уравновешивается процессами рекомбинации. [2]
Рекомбинация электронов и дырок может происходить через переходы зона - зона, а также глубокие примесные уровни или ловушки. Такая рекомбинация характеризуется временем жизни неосновных носителей заряда, которое в первом приближении определяется отношением избытка плотности заряда неосновных носителей к скорости рекомбинации G. Например, для дырок в кремнии n-типа время жизни неосновных носителей заряда
τp = p/G,
где р - средняя плотность инжектированных дырок. Время жизни неосновных носителей заряда для ловушек плотностью Nt с одним уровнем энергии Et в запрещенной зоне кремния [11].
(2.11)
В этом выражении Ef- уровень Ферми; Ei = (Ес- Ev)/2 - собственный уровень; h0 = n/n0, где n - средняя плотность инжектированных электронов; n - равновесная плотность электронов. Собственные времена жизни соответственно дырок и электронов.
(2.12)
(2.13)
Здесь σр, σn - сечения захвата дырок и электронов уровнями ловушек; vs-тепловая скорость носителей; Nt - плотность ловушек. Для низкого и высокого уровней инжекции уравнение (2.3) существенно упрощается.
При условии низкого уровня инжекции в выключенном состоянии или на заключительной стадии этапа восстановления при выключении h0«1 и выражение для времени жизни принимает вид:
(2.14)
где b0 = σр/σn - отношение сечений захвата уровней ловушек. Следует отметить, что время жизни при низком уровне инжекции в значительной степени зависит от характеристик определяющего уровня ловушки (b0, Nt, и Еf,).
При высоком уровне инжекции h0»1 и выражение для времени жизни принимает вид:
(2.15)
Ранее это время уже встречалось в тексте как амбиполярное время жизни τ0 при высоких уровнях инжекции. Оно является критичным при определении напряжения на тиристоре в открытом состоянии.
Кроме того, важное значение имеет время жизни и в области пространственного заряда τsc, поскольку оно характеризует генерацию носителей в слое пространственного заряда р-n-перехода и влияет на значение тока утечки в тиристоре. Время жизни в пространственном заряде [11]
(2.16)
Основной задачей при конструировании тиристора является выбор соответствующего значения времени жизни для вычисления характеристик прибора. В случае быстродействующих тиристоров требуется малое время выключения. Поэтому и время жизни в приборе обычно регулируется путем введения известных примесей или электронным облучением. Уровень ловушки, определяющий время жизни, хорошо известен, и время жизни можно точно вычислить, используя вышеприведенные аналитические выражения. [9]
2.5 Проектирование структурыТипичная р-n-р-n-структура мощного тиристора, изображенная на рис. 3.2, изготавливается обычно путем диффузии. В исходный кремний n-типа проводится диффузия акцепторных примесей, в результате которой образуется симметричная р-n-р-структура, а затем с одной стороны кремниевой пластины проводится диффузия n-типа для формирования катодного эмиттера.
Рисунок 2.3 - Структура мощного р-n-р-n-тиристора: УЭ - управляющий электрод
Очевидно, что описанная процедура изготовления тиристора очень проста и экономична, поскольку включает в себя только два диффузионных процесса. Однако в некоторых случаях необходимо несколько видоизменять эту процедуру для того, чтобы создать асимметричные р-n-р-структуры, требующиеся для специальных типов тиристоров, например асимметричных и запираемых.
2.5.1 р-база (Р2)Для обеспечения высокого напряжения пробоя силовых тиристоров свыше 1000 В необходимо слои Р1 и Р2, которые формируют обратный и прямой блокирующие переходы J1 и J2 соответственно, создавать путем диффузии. Их ширина WP1 = WP2 +WN2 изменяется в интервале от 30 до 140 мкм.
Существуют три легирующие акцепторные примеси, которые обычно используются для создания этих слоев: галлий, алюминий и бор. Бор применяется при локальной диффузии акцепторов, например, для создания охранных колец в пленарных структурах. К сожалению, бор является медленно диффундирующей примесью по сравнению с галлием и алюминием. Он также создает нарушения в кристаллической решетке кремния, в результате которых могут возникнуть большие тепловые токи утечки.
С другой стороны, как галлий, так и алюминий являются быстродиффундирующими элементами и не вносят структурных нарушений в кристаллическую решетку кремния, но в отличие от бора они не могут использоваться для создания рисунка по фотошаблону с применением двуокиси кремния в качестве маскирующего средства.
Распределение легирующих примесей в слоях, полученных диффузией, может быть описано следующими уравнениями. Если источник легирующей примеси является неограниченным, то распределение характеризуется функцией ошибок:
N(x,t) = N0erfc()-NB, (2.17)
а если источник диффузии является ограниченным, то оно описывается функцией Гаусса
N(x,t) = N0exp()-NB (2.18)
Здесь N(x, t) - концентрация примеси в некоторой точке х для времени диффузии t; No - поверхностная концентрация примеси; D - коэффициент диффузии; Nв - концентрация примеси в исходном материале.
Рисунок 2.4 - Коэффициенты диффузии для часто встречающихся примесей в кремнии.
Значения коэффициентов диффузии примесей, используемых в производстве высоковольтных силовых тиристоров, приведены на рис. 2.4. С их учетом рассчитываются распределения примесей при диффузионных процессах. Применяются также и компьютерные методы расчета. На рис. 2.5 показаны функция Гаусса и функция ошибок. [10]
Одним из наиболее критичных параметров при проектировании тиристора является поперечное сопротивление р-базы. Оно влияет как на ток управления, так и на стойкость тиристора к эффекту dv/dt.
Рисунок 2.5 - Дополнительная функция ошибок и функция Гаусса
Поперечное сопротивление р-базы усредненное удельное сопротивление р-базы ширина р-базы :
(2.19)
Усредненное удельное сопротивление р-базы лучше всего рассчитывать, используя численное интегрирование удельного сопротивления между переходами J3 и J2. Как альтернативу можно использовать кривые Ирвина [6], которые дают приближенное значение поперечного сопротивления.
Концентрация легирующей примеси в р-базе и ширина р-базы определяют эффективность инжекции n-эмиттера. Поскольку высокий коэффициент инжекции иметь предпочтительнее, для того, чтобы добиться минимального напряжения в тиристоре в открытом состоянии, любые поиски оптимального решения заключаются в обеспечении минимума концентрации легирующей примеси в р-базе.
Ограничение накладывается также на ширину р-базы, от значения которой зависит напряжение пробоя тиристора. В закрытом состоянии слой пространственного заряда распространяется на обе стороны перехода J2. Если при расширении слой пространственного заряда в слое Р2 достигает эмиттерного перехода J3, то происходит преждевременный пробой. [8]
На практике переход J3 имеет катодные эмиттерные шунты, ограничивающие значение коэффициента передачи апрп транзистора в схеме с общей базой. В этом случае толщина слоя пространственного заряда в р-базе, при котором происходит пробой, приблизительно равна самой ширине р-базы.
Рисунок 3.6 - Зависимости отношения ширины р-слоя объемного заряда к общей ширине области объемного заряда от общего напряжения, отнесенного к концентрации примеси в n-базе (а) и суммарной ширины области объемного заряда и емкости от V/NB (б). Кривые показаны для различной глубины хj гауссовско-го диффузионного перехода при 300 К для NB/N0 в промежутке от 3·108 до 3·104
Для диффузионного перехода ширина слоя пространственного заряда может быть рассчитана из численного решения одномерного уравнения Пуассона для диффузионного распределения примеси:
(2.20)
где V - потенциал; р(х) - концентрация заряда в слое пространственного заряда; εs, - диэлектрическая проницаемость кремния.
Рисунок 2.7 - Отношение толщины слоя объемного заряда на р-стороне для двойного диффузионного перехода к суммарной ширине слоя объемного заряда (а) и суммарная ширина области пространственного заряда как функция отношения напряжения к NB (б) для хв=100 мкм и различных комбинаций (xj1 xj2). Кривые показаны для N01 = 1020·см-3, NB = 6·1013 см-3, N02 = 2·1012·см-3, и N02 = 1012·см-3.
Примеры характеристик слоя пространственного заряда для р-n-перехода, полученного в результате диффузии одной примеси, даны в [1], а для диффузии двух примесей с концентрационными профилями, описываемыми функцией ошибок,- в [5]. Результаты этих публикаций воспроизведены на рис. 2.6 и 2.7. Для типичных силовых тиристоров, изготовленных по диффузионной технологии, слой пространственного заряда в р-базе может составлять 10-20% общей ширины слоя пространственного заряда, а использование двойной диффузии галлия и алюминия, как описано в [3], является одним из способов ограничения распространения пространственного заряда в р-базе ,(рис. 2.8).
Рисунок 2.8 - р-база, изготовленная методом двойной диффузии: хр - протяженность заряда в р-базе в прямом блокирующем режиме; I - фосфор, диффузионный эмиттер; II - высокая концентрация, мелкая диффузия; III -низкая концентрация, глубокая диффузия.
В результате такой двойной диффузии получается диффузионный профиль алюминия с низкой концентрацией и большой глубиной, что позволяет снизить электрическое поле перехода и, следовательно, повысить напряжение пробоя, тогда как более мелкий концентрационный профиль галлия препятствует распространению слоя пространственного заряда к переходу J3.
В настоящее время невозможно сформулировать точное уравнение распределения примеси в р-базе. С учетом факторов, рассмотренных выше, а именно: поперечного сопротивления р-базы, ограниченных возможностей выбора диффузанта и ширины смыкания р-базы, тем не менее, существует большое количество возможных вариантов.
Ширина р-базы должна быть как можно меньше, чтобы оптимизировать, например, время включения, скорость распространения включенного состояния и напряжение в открытом состоянии.
Выбор правильного соотношения между удельным сопротивлением и толщиной n-базы для тиристора основывается на требуемых напряжениях пробоя его прямого и обратного переходов. Главное ограничение максимальных размеров толщины базы задается исходя из напряжения прибора в открытом состоянии, которое пропорционально корню квадратному из толщины n-базы.
С целью обеспечения низких потерь в тиристоре толщина n-базы поддерживается минимально необходимой, для того чтобы получить вполне определенное напряжение пробоя.
Если воспользоваться уравнением для аппроксимации коэффициента переноса и считать коэффициент инжекции перехода J1 равным единице, то максимальное обратное напряжение тиристора:
(2.21)
Это выражение можно упростить, если принять, что WNl-xn«Lp, тогда
(2.22)
Диффузионная длина носителей заряда Lp=-√Dpτp, где τр время жизни неосновных носителей заряда при условиях низкого уровня инжекции. Однако чтобы получить решение, необходимо знать точную зависимость между удельным сопротивлением n-базы и напряжением лавинного пробоя Vв диффузионного перехода. [11]
Зависимости напряжения пробоя от удельного сопротивления n-базы показаны на рис. 2.9. К сожалению, хотя значение удельного сопротивления с некоторой точностью может быть определено по графику на рис. 2.9, на практике имеем дело с теми допусками, с которыми контролируется удельное сопротивление при производстве кремния. Это накладывает ограничения на проектирование тиристора, которое должно ориентироваться на наихудшую ситуацию, когда удельное сопротивление находится в нижнем конце допуска.
Рисунок 2.9 - Зависимости напряжения пробоя глубоких диффузионных р-n-переходов в радиационно-легированном кремнии от удельного сопротивления n-базы.
Следует подчеркнуть, что данная методика проектирования основывается на определении значения напряжения обратного пробоя без учета влияния поверхности перехода и условия возникновения прямого пробоя. На практике обычно учитывается, что будет достигнута лишь часть значения напряжения объемного пробоя, которая определяется по методике, используемой отдельно для каждого конкретного контура поверхности.
Для тиристора, имеющего шунты в катодном эмиттере, можно с достаточной точностью предположить, что прямое и обратное напряжения пробоя у него приблизительно равны.
При проектировании тиристора необходимо учитывать ток утечки, так как при высокой температуре необходимо ограничить прямой и обратный токи с целью уменьшить выделение тепла и гарантировать стабильность работы прибора. Ток утечки трудно предсказать с необходимой точностью, поскольку этот параметр в значительной степени определяется локальными неоднородностями в кремнии.
2.5.3 р-(Р1) и n-эмиттеры [N2]В открытом состоянии тиристора эмиттерные области характеризуются коэффициентами инжекции эмиттеров двух составных транзисторов и плотностью избыточных носителей в базовых областях. Оба эмиттера обычно являются диффузионными слоями: для катода легирующей примесью служит фосфор, а для анода - галлий, алюминий или бор; р-эмиттер используется также для блокирования обратного напряжения тиристора; р-база и р-эмиттер формируются обычно в процессе одной диффузионной операции.
При высоком уровне инжекции коэффициенты в обоих случаях должны быть достаточно большими, для того чтобы обеспечить максимальный избыточный заряд и, следовательно, минимальное сопротивление базовых областей тиристора в открытом состоянии. Это реализуется при больших диффузионных длинах и малой величине отношений NNl/NPl и NP2/NN2. С хорошим приближением концентрации основных носителей и равновесных условиях принимаются равными средним уровням легирующей примеси в соответствующих областях тиристора. Для высокой эффективности эмиттера концентрация легирующей примеси в эмиттерном слое должна быть высокой, а в базе - низкой. [11]
Если, например, предполагается, что коэффициент инжекции должен быть равен 0,99, то задаются следующими условиями расчета:
(NNl,/NPl) < 0,01 (LPl,/WNl) и (NP2,/NN2) < 0,01 (LPl,/WP2)
Однако для р-эмиттера диффузия часто проводится при низких концентрациях легирующей примеси. В этом случае получается мелкий концентрационный профиль, требуемый для р-базы, и обеспечивается высокое напряжение пробоя. Естественно, что при такой диффузии не удовлетворяются вышеупомянутые условия. Проблема может быть решена за счет создания вблизи поверхности слоя Р0 с высокой концентрацией примеси.
Несмотря на то что при высоком уровне инжекции требуется большой коэффициент инжекции для достижения минимального напряжения тиристора в открытом состоянии, при низком уровне инжекции коэффициент передачи тока, а следовательно, и коэффициент инжекции должны быть небольшими для того, чтобы обеспечить низкий ток утечки и высокое напряжение пробоя. Это условие выполняется при использовании эмиттерных шунтов.
В данной курсовой работе:
- был обоснован выбор кремния;
- расчитанно время жизни не основных носителей зарядов;
- спроектирована структура тиристора на основе динистора кремния.
1. Ніконова З.А., Небеснюк О.Ю. Твердотіла електроніка. Конспект лекцій для студентів напрямку «Електроніка» ЗДІА/ Запоріжжя: Видавництво ЗДІА, 2002. – 99с.
2. Твердотіла електроніка. Навчальний посібник до курсового проекту для студентів ЗДІА спеціальності «Фізична та біомедична електроніка» денної та заочної форм навчання /Укл: З.А. Ніконова, О.Ю. Небеснюк,, М.О. Літвіненко, Г.А. Слюсаревська. Запоріжжя, 2005. – 40с.
3. Батушев В. А. Электронные приборы. – М. , “Высшая школа” 1980. – 383 с.
4. Тугов Н.М., Глебов Б.А., Чарыков Н.А. Полупроводниковые приборы. – М.: Энергоатомиздат, 1990. – 576 с.
5. Пасынков В. В., Чиркин Л. К., Шинков А. Д. Полупроводниковые приборы. – М.: Высшая школа, 1981. – 431 с.
6. Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы. М.: Высшая школа, 1987г. 379 c.
7. Аваев Н.А., Наумов Ю.Е., Фролкин В.Т. Основы микроэлектроники. – М.: Радио и связь, 1991г. – 288 с.
8. Ефимов И.Е., Козырь И.Я., Горбунов Ю.И. Микроэлектроника. Физические и технологические основы, надежность. – М.: Высшая школа, 1986.– 464 с.
9. Ефимов И.Е., Горбунов Ю.И., Козырь И.Я. Микроэлектроника. Проектирование, виды микросхем, функциональная электроника. – М.: Высшая школа, 1987. – 416 с.
10. Ефимов И.Е., Козырь И.Я. Основы микроэлектроники. – 2-е изд., перераб. и доп. – М.: Высшая школа, 1983. – 384 с.
11. Степаненко И.П. Основы микроэлектроники. – М.: Сов. радио, 1980. – 424 с.
12. Полупроводниковые приборы: транзисторы. Справочник. Под ред. Н. Н. Горюнова – М.: Энергоатомиздат, 1985г. – 904 с.
13. Ю П. Основы физики полупроводников /П. Ю, М. Кардона. Пер. с англ. И.И. Решиной. Под ред. Б.П. Захарчени. 3-е изд. М.: Физматлит, 2002. 560 с.
14. Федотов Я. А. Основы физики полупроводниковых приборов. М., “Советское радио”, 1970. – 392 с.
15. Тейлор П. Расчет и проектирвание тиристоров: Пер с англ. – М.: Энергоатомиздат, 1990. 208с.
16. Гершунский Б.С. Основы электроники и микроэлектроники: Учебник. – 4-е изд., К.: Вища школа,1983 г . –384 с.
... напряжения, выпрямителей 2.4.1 Расчет источника питания 2.4.2 Расчет выпрямителя по схеме с нулевым выводом 2.5 Расчет элементов схемы импульсного усилителя 3. Моделирование выпрямителя Выводы Приложение А Перечень элементов управляемого выпрямителя и СИФУ Список литературы ВВЕДЕНИЕ В настоящее системы преобразования переменного синусоидального напряжения и тока в постоянные ...
... ). Перспективы развития микроэлектроники Функциональная микроэлектроника. Оптоэлектроника, акустоэлектроника, магнетоэлектроника, биоэлектроника и др. Содержание лекций 1 Цели и задачи курса “Электронные, квантовые приборы и микроэлектроника”. Физика полупроводников. p-n- переходы. Полупроводниковые диоды. Разновидности и характеристики. 2 Транзисторы. Принцип действия, разновидности и ...
... пунктов (ОУП) линий междугородной телефонно-телеграфной связи, для питания аппаратуры телеграфов и районных узлов связи (РУС). ВУТ с номинальным напряжением 60В применяются для питания аппаратуры автоматических телефонных станций (АТС) городской телефонной сети, аппаратуры, междугородной автоматики, питания, аппаратуры телеграфов и РУС. ВУТ 152/50 применяются для питания моторных цепей. ВУТ 280 ...
... контактов обеспечивается выбором их материала и конструкции при использовании одноступенчатой системы. В заключение отметим, что в настоящее время начинают широко применяться электрические аппараты с герметизированными контактами и контактами, работающими в глубоком вакууме. Жидкометаллические контакты? Наиболее характерные недостатки твердометаллических контактов следующие: 1. С ростом ...
0 комментариев